ІІ МЕЖДУНАРОДНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

БИОРАЗНООБРАЗИЕ И УСТОЙЧИВОЕ РАЗВИТИЕ

12-16 сентября 2012 года, г. Симферополь, Украина

ТЕЗИСЫ ДОКЛАДОВ

8. М. М. Басова, Н.А. Темурьянц, С.А. Максимов, А.А. Антипенко "Спосіб мікрокількісного визначення ліпідів в тканинах гідробіонтів". Заявка № 200904150, приоритет 27.04.09, решение о выдаче патента от 24 сентября 2009 г.

УДК 639: 528.237

ПАРАМЕТРЫ БИОХИМИЧЕСКОГО СОСТАВА КАК ИНДИКАТОРЫ СОСТОЯНИЯ ЧЕРНОМОРСКОЙ ВОДОРОСЛИ *Gelidium latifolium* (Grev.) Born. et Thur. (Rhodophyta)

Беляев Б. Н., Береговая Н. М., Далекая Л. Б.

Институт биологии южных морей им. А.О. Ковалевского НАН Украины, г. Севастополь, Украина

Красная черноморская водоросль гелидиум в биотехнологии ценится в связи с большим содержанием и высоким качеством агара. Не менее ценными продуктами, которые можно получить из водоросли, являются в - каротин, составляющий большую часть суммарных каротиноидов и обладающий антиоксидантными свойствами, хлорофилл, очищающий организм от шлаков, токсинов, бактерий, а также Rфикоэритрин, применяемый иммунной диагностике, микроскопии и цитометрии (7). В то же время указанные биохимические параметры могут являться индикаторами состояния самой Нами исследовалось водоросли. абиотических факторов (температура, соленость), а также концентрации биогенов (фосфора и азота) на содержание пигментов и агара в условиях культивирования. Динамика концентрации агара (А), суммарных каротиноидов (Кр), хлорофилла-а (Cl-a) и R-фикоэртрина (Φ_3) сопоставлялась с изменениями параметра удельная скорость весового роста и.

Объектом исследования служила красная черноморская водоросль *Gelidium latifolium* (GREV.) Born. et Thur (*Rhodophyta*), собранная с бетонных берегоукрепительных сооружений правого берега бухты Карантинной (Черное море, г. Севастополь).

Исследования по культивированию проводили на лабораторной установке (2). Такая установка позволяет проводить полные факторные эксперименты ($\Pi\Phi$ Э) типа 2^3 с одним повтором и $\Pi\Phi$ Э типа 2^2 с двумя повторами, либо дробный факторный эксперимент (ДФЭ) типа 2^{3-1} с двумя повторами (1), в которых температура, освещенность, плотность посадки макрофита и концентрация биогенов могут быть заданы на двух уровнях. Температуру варьировали от 15 до Освещенность при использовании люминесцентных ламп дневного (ЛД) и белого (ЛБ) света поддерживали на уровне 20 кЛк в режиме день - ночь в соотношении 16:8. Использовали питательную среду на основе прибрежной черноморской воды, соленость которой (17,5–18 %) меняли разбавлением дистиллированной водой до 9 %, либо добавлением морской соли до 34 ‰. Содержание биогенов варьировали от 4,76 мг (340 μМ) азота и 0.8мг (26 μ M) фосфора до 8.54 мг (610 μ M) азота и 1,74 мг (56 μМ) фосфора на литр. Сырую 342

биомассу (обычно раз в неделю) определяли на аптекарских весах с точностью до 10 мг. Среднюю удельную скорость весового роста µ определяли по формуле (3). Суммарные каротиноиды и хлорофилл—а экстрагировали из одной навески хлороформ - этанольной смесью (2:1) и определяли по методике, разработанной в ИнБЮМ (6), выделение агара осуществляли путем щелочной (5), а фикоэритрина — водной экстракции (4).

Водоросли перед интенсивным культивированием в установке, в промежутках между сериями и после экспериментов, отправляли на "отдых" в 10-секционном 250-литровом аквариуме с фильтрованной прибрежной черноморской водой соленостью 17,5-18 ‰ без добавления биогенов, которую меняли 1 раз в месяц. Каждая секция барбатировалась сжатым воздухом. Освещенность не превышала 0,3 кЛк; температуру, которая в зависимости от сезона и погодных условий менялась от 13 °C до 25 °C, не регулировали.

Усредненные результаты двух серий измерений проб из эксперимента № 1, в котором температура поддерживалась на уровне 25-26 °C, освещенность - на уровне 20-22 кЛк, минеральное питание – до 4,8 мг азота и 0,8 мг фосфора на 1 л питательной среды и задавалось 4 уровня солености (9, 18, 26 и 34 ‰), показали, что при солености 35 ‰ содержание агара в 1,3-1,4 раза меньше, чем при уровнях солености 9-26 ‰, а средняя удельная скорость весового роста и в 1,3-1,48 раз выше. Таким образом, влияние солености на содержание агара не содержит прямого действия - оно, вероятно, опосредовано через скорость наращивания биомассы. Содержание суммарных каротиноидов оказалось практически постоянным при всех уровнях солености, а содержание хлорофилла – пропорционально ц.

В эксперименте № 2 при исследовании скорости потребления биогенов поддерживали температуру $20\pm0.5\,^{\circ}$ С, освещенность 23-25кЛк, которая была непрерывной первые $106\,$ часов. В объемах $1-4\,$ задавали соленость $26\,$ ‰, а в объемах $5-8-34\,$ ‰. В объемах $3,4,7\,$ и $8\,$ задавали концентрацию биогенов на уровне $6,16\,$ мг $(440\,$ µМ) азота $(N)\,$ и $1,24\,$ мг (40 µМ) фосфора $(P)\,$ на литр среды, а в объемах $1,2,5\,$ и 6-соответственно $8,54\,$ мг $(610\,$ µМ) и $1,74\,$ $(56\,$ µМ).

В объемах 1, 3, 5 и 7 начальная плотность посадки гелидиума (W_0) составляла 2 г/л (3г/дм 2), а в объемах 2, 4, 6 и 8-4 г/л (6 г/дм 2). Были

отобраны 2 серии проб (12.09 и 20.09.05), результаты измерения которых сведены в таблицу.

Таблица. Влияние температуры, солености, плотности посадки и концентрации азота и фосфора на биохимические показатели гелидиума

$N_{\underline{0}}$	Агар, %	Фикоэритрин, %	Каротиноиды, мкг/г	Хлорофилл–а, %	μ
Объе	12.09	12.09	12. 09	12.09	12.09
ма	20.09	20.09	20.09	20.09	20.09
1	25↑	$0.35 \pm 0.03 \uparrow$	1008 ± 40↓	$0.065 \pm 0.005 \uparrow$	0,053
	30	$0,36\pm0,03$	991 ± 56	$0,\!100 \pm 0,\!005$	0,053
2	29↑	$0,46 \pm 0,03 \uparrow$	1145 ± 150↓	$0.082 \pm 0.005 \uparrow$	0,025↑
	37	$0,\!48 \pm 0,\!07$	837 ± 64	$0,100 \pm 0,003$	0,060
3	26↑	$0,49 \pm 0,03 \downarrow$	1011 ± 50↓	0.060 ± 0.007 —	0,050↑
	27	$0,40 \pm 0,09$	569 ± 40	$0,060 \pm 0,002$	0,073
4	29–	$0,71 \pm 0,05 \downarrow$	1031 ± 70↓	$0.060 \pm 0.003 \uparrow$	0,032↑
	29	0.37 ± 0.02	552 ± 62	0.073 ± 0.003	0,045
5	26↓	0.92 ± 0.01 \rightarrow	1038 ± 122↓	$0.061 \pm 0.005 \uparrow$	0,030↑
	22	0.38 ± 0.01	633 ± 120	$0,085 \pm 0,002$	0,042
6	28↓	0.94 ± 0.01 \downarrow	878 ± 29↓	$0.050 \pm 0.005 \uparrow$	0,025↑
	26	0.33 ± 0.02	487 ± 67	$0,075 \pm 0,005$	0,039
7	33↓	$1,05 \pm 0,15 \downarrow$	1800 ± 140↓	$0.040 \pm 0.005 \uparrow$	0,027↑
	25	$0,40 \pm 0,07$	750 ± 48	$0,065 \pm 0,003$	0,064
8	27↑	1,25 ± 0,19↓	1499 ± 44↓	0.080 ± 0.001 —	0,015↑
	28	0.38 ± 0.06	649 ± 3	$0,079 \pm 0,003$	0,025

В ходе эксперимента № 2 было установлено, что в пределах диапазона заданных условий при средней удельной скорости весового роста 0.063-0,073 сутки -1 средняя удельная скорость потребления азота может колебаться от 37 до 71 мкг/г час, а фосфора - от 6,4 до 9,6 мкг/г час. По результатам эксперимента были построены две серии линейных моделей вида $y = B_{0+}B_1X_{1+}B_2X_{2+}$ $B_3X_3 + B_{12} X_1 \cdot X_2 + B_{13} X_1 \cdot X_3 + B_{23} \cdot X_2X_3 + B_{123} \cdot X_1 \cdot X_2 \cdot X_3$ определяющих прямое влияние факторов среды – S ‰, C_{NP} , W_0 (коэффициенты B₂, B₃), ИХ двойных и тройного В1, взаимодействия на среднюю удельную скорость весового роста, содержание в гелидиуме агара и пигментов. Условия, предваряющие отборы проб в двух сериях (12 и 20.09.05) отличались, как минимум, по освещенности из-за возросшего самозатемнения биомассы гелидиума: в первой серии биомасса достигала 12-13,2г (плотность 8-8,8 г/л), а во второй – 8,6-9,7г (5,7-6,5 г/л). Поэтому и коэффициенты моделей в двух сериях должны были отличаться.

Анализ моделей не подтвердил жесткой обратной зависимости концентрации агара от величины μ . Обратил на себя внимание тот факт, что увеличение концентрации биогенов влияло отрицательно и с одинаковой силой на обе величины и поэтому не могло быть причиной разнонаправленности градиентов изменения μ и А. Увеличение биомассы (значение W в матрице планирования = +1) приводило к уменьшению μ_1 и μ_2 , очевидно, исключительно за счет понижения освещенности, т.к. лимитирования по питанию не было. При этом содержание агара возрастало и в первой, и во второй серии. Можно было констатировать, что и соленость действует

на μ и содержание агара однозначно. Правда, воздействие на A_2 было в 1,5 раза меньше, чем на μ_2 . Тем не менее, фактор солености также не мог быть причиной разнонаправленности градиентов величин μ_2 и A_2 .

Было выявлено, что из трех заданных факторов только плотность культуры воздействовала на рост гелидиума и накопление агара в противофазе. Единственный механизм воздействия — это понижение освещенности. Здесь возможны два варианта. Первый — это опосредованное влияние через величину µ: понижение освещенности приводит к снижению скорости роста, что способствует увеличению накопления агара. Второй — понижение освещенности непосредственно стимулирует накопление агара.

Данные по накоплению фикоэритрина вполне соответствовали данным опытов с грацилярией (4). Наблюдалось явное несопряжение процессов увеличения темпов роста биомассы и накопления уровни фикоэритрина. При этом нижние солености и концентрации биогенов были явно более благоприятны для величины Φ_{3} , как, впрочем, и для величины µ. Понижение освещенности способствовало накоплению фикоэритрина. исследовании содержания суммарных каротиноидов было отмечено, что их содержание обратно пропорционально величинам и при значительных различиях и тех, и других: $K_1/K_2 =$ 1,72, a $\mu_2/\mu_1 = 1,56$.

Среднее содержание хлорофилла в сериях было прямо пропорционально увеличению удельных скоростей роста. При этом Cl₂/Cl₁=1,27. В шести из восьми вариантов градиенты изменения содержания хлорофилла были

противоположны градиентам изменения содержания каротиноидов, а последние в 6 из 8 вариантов однонаправлены с градиентами содержания фикоэритрина (таблица). На содержание хлорофилла, так же, как и на величину, отрицательно действовало повышение солености, а повышение концентрации биогенов и самозатемнение гелидиума приводило к росту его содержания.

Таким образом, результаты исследований позволяют сделать следующие выводы:

- концентрация хлорофилла-а в талломах гелидиума в зависимости от условий культивирования может меняться в пределах от 0,03 до 0,16 % сухого веса и уровень ее прямо пропорционален величине средней удельной скорости весового роста (µ);
- содержание фикоэритрина колеблется от 0,21 до 1,25 % сухого веса, а общих каратиноидов от 550 до 1800 мкг на 1 г сухого вещества и уровень их обратно пропорционален и;
- увеличение солености питательной среды, основанной на фильтрованной черноморской

- воде, до 26 % не только повышает эффективность наращивания биомассы гелидиума за счет снижения пресса эпифитов, но и может быть рекомендовано в качестве элемента биотехнологии, повышающего содержание в ней фикоэритрина и каротиноидов;
- содержание агара, как правило, обратно пропорционально µ и колеблется от 16,3 до 43,4 % сухого веса. Максимальные его величины были зафиксированы в талломах гелидиума, собранного в октябре и культивированного в ноябредекабре месяце при температуре 23-25 °C, концентрации азота 4,8 мг/л, фосфора 0,8 мг/л;
- как правило, в талломах гелидиума, используемых после «отдыха» повторно для интенсивного культивировния, содержание фикоэритрина, хлорофилла и каротиноидов превышает таковое в талломах, используемых впервые;
- вопрос о непосредственном влиянии освещенности на содержание агара, фикоэритрина, каротиноидов и хлорофилла требует дополнительных исследований.

Список источников

- 1. Адлер Ю. П. Планирование эксперимента при поиске оптимальных условий / Ю. П. Адлер, Е. В. Маркова, Ю. В. Грановский. М.: Наука. 1976. 280с.
- 2. Беляев Б.Н. Техническое обеспечение культивирования макроводорослей / Б. Н. Беляев // Рыбное хозяйство Украины. 2001. № 5. С.21-24.
- 3. Беляев Б. Н. Влияние солености на продуктивность красной черноморской водоросли *Gelidium latifolium* (Grev.) Born et Thur / Б. Н. Беляев, Н. М. Береговая, Л. Б. Далекая // Рыбное хозяйство. 2005. № 6 (41). С. 12-17.
- 4. Беляев Б.Н. Перспективы получения фикоэритрина при культивировании *Gracilaria verrucosa* (Huds.) Papenf. (*RHODOPHYTA*) / Б. Н. Беляев, М. В. Нехорошев // Альгология. 2002. Т.12, № 4. С.481-490.
- 5. Кизиветтер И. В. Производство агара при варке анфельции без добавления (беломорский агар) / И. В. Кизиветтер, В. С. Грюнер, В. А. Евтушенко- // Переработка морских и других промысловых водных растений.- М., 1967. С. 100-103.
- 6. Копытов Ю. П. Схема комплексного биохимического анализа гидробиотнов / Ю. П. Копытов, И. А. Дивавин, И. М. Цымбал // Рациональное использование ресурсов моря важный вклад в реализацию производственной программы: материалы конф. / АН УССР. Ин т биологии южных морей им. А. О. Ковалевского. Севастополь, 1985. Ч. 2 С. 227-231. Деп. в ВИНИТИ 16.04.85, № 2556 85.
- 7. Стадничук И. Н. Фикобиллипротеины / И. Н. Стадничук // Итоги науки и техники / ВИНИТИ АН СССР. Сер. Биол. химия.- М., 1990.- С. 87-98.

УДК 712.25 (58006)

СТАРИННЫЕ ПАРКИ МОЛДОВЫ – СОСТОЯНИЕ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ

Букацел В. А.

Ботанический сад (Институт) АН Молдовы, г. Кишинев, Республика Молдова

Молдова – край живописной и своеобразной природы, где сохранилось немало памятников архитектуры, в том числе уникальных памятников садово-паркового искусства, которые отражают материальную жизнь и эстетические взгляды прошлых веков, обогащают нас знаниями о природе, национальной культуре народа.

Садово-парковое искусство Молдовы имеет

многовековую историю – от утилитарных садов и виноградников в феодальной Молдове, монастырских садов XVI-XVII вв., до общественных городских садов и помещичьих усадебных парков XIX-XX вв. Общее количество зафиксированных на территории Молдовы объектов садовопаркового искусства составляет около 50 единиц [2, 3], из них третья часть включена в перечень памятников взятых под государственную охрану.