ПРОМЫШЛЕННОЕ ИСПОЛЬЗОВАНИЕ АЛТАЙСКОГО ЗЕРКАЛЬНОГО КАРПА

И.В. Морузи, доктор биологических наук, профессор Е.В. Пищенко, доктор биологических наук Новосибирский государственный аграрный университет E-mail: epishenko@ngs.ru

Ключевые слова: алтайский зеркальный карп, выращиание, рыбоводно-биологические показатели

Показаны результаты по выращиванию товарного карпа в озерах и прудах при интегрированных технологиях.

Порода прудовых рыб алтайский зеркальный карп создана в природно-климатических условиях юга Западной Сибири. Родоначальником породы был галицийский карп, завезенный после ступенчатой акклиматизации в рыбхозах европейской части России и на Урале в Алтайский край в 1932 г. и прошедший 32-летний естественный отбор в одном из непроточных прудов в местных условиях. При длительном свободном скрещивании создавалось и сохранялось генетическое разнообразие популяции карпа с высокой наследственной изменчивостью.

Основываясь на данных В.Л. Иоганнсена [1], Н.П. Дубинина [2] и других авторов, методом селекции при создании породы был избран массовый направленный отбор без применения скрещивания с другими породами карпа и сазаном. В результате многолетней селекционно-племенной работы (1964-1994 гг.) была создана новая порода прудовых рыб. Племенные особи имеют зеркаль-

ный чешуйный покров разбросанного типа, отличаются повышенной скоростью роста, эффективным использованием кормов на прирост массы, обладают высокими репродуктивными качествами, жизнестойкостью на стадиях сеголеток-годовик. Хозяйственно полезные признаки устойчиво наследуются.

Порода существует в виде двух репродуктивно изолированных стад - чумышского в первой зоне рыбоводства и приобского во второй зоне. Стада размещены в Алтайского крае в двух племенных хозяйствах-оригинаторах: ГУФП «Рыбный» Кытмановского района и ОАО «Племрыбхоз «Зеркальный» Павловского района.

Роль направленного селекционного отбора и подбора групп для воспроизводства убедительно подтверждается различиями в массе тела и фенотипическими изменениями других экстерьерных признаков самок разных поколений селекции, достигших половой зрелости (табл. 1).

Таблица 1

Экстерьер самок алтайского зеркального карпа F_3 и F_7

		экстерьер са	мок алтанского з	еркального карпа	а Гзи Г7	
Показатель	Возраст, лет	Масса тела, г	Коэффициент	Индексы телосложения		
Показатель			упитанности F ₃	прогонистости	широкоспинности	обхвата тела
$X \pm Sx$	4	2541,9±43,8	$2,7\pm0,1$	$3,4\pm0,1$	$22,4\pm0,4$	$95,4\pm2,1$
$A \pm 3x$	5	$3688,7\pm33,0$	$2,9\pm0,1$	$2,9\pm0,1$	22,3±0,1	$89,2\pm0,5$
			\mathbf{F}_{7}			
V + C	4	4452,9±50,1	$2,7\pm0,1$	$3,5\pm0,2$	$22,9\pm0,5$	$97,9\pm2,7$
$X \pm Sx$	5	4927,2±46,9	3.6 ± 0.1	2.6 ± 0.1	22.8 ± 0.4	$94,9\pm0.9$

Масса тела самок-четырехлеток за 4 поколения селекции увеличилась в 1,75 раза, а самок в возрасте 5 лет - на 33 %. При этом весьма незначительно увеличилась длина тела - всего на 3,1 %.

Одновременно с увеличением массы тела меняются экстерьерные признаки, положительно с ней коррелирующие: увеличиваются высота, толщина и обхват тела соответственно на 21,61; 14,7

и 12,9 %. Из индексов экстерьера у самок пяти лет заметно повысились упитанность (на 24 %) и обхват (на 10,64 %), прогонистость снизилась на 11,5 %. Это указывает на изменение формы тела, повышение его компактности и лучшую развитость латеральной мускулатуры.

Форма тела является также визуальным показателем развития гонад.

Высокие показатели массы самок обеспечиваются используемой системой отбора и подбора рыб, нормативными условиями содержания и кормления (плотность посадки, гидрохимический режим, обеспеченность кормами), а также наследственными качествами рыб.

В селекционном стаде по массе преобладают самки класса элита, численность особей первого класса меньше всего на 11,3 %.

Одним из наиболее важных признаков, характеризующих хозяйственную и племенную

ценность рыб, является их воспроизводительная способность. Ещё при формировании исходного стада нами были выявлены половозрелые четырехлетние самки. При дальнейшей селекции учитывали не только массу самок, величину плодовитости, но и возраст наступления половой зрелости. В 2002 г. численность четырех и пятигодовалых самок в племенном стаде была одинаковой. В классном составе самок преобладали высокоплодовитые особи (табл. 2).

Таблица 2 Классный состав самок АЗК по относительной рабочей плодовитости (г икры на 1 кг массы самки) в 2002 г.

Показатель	Класс по ОРП				Общая численность
Показатель	элита-рекорд	элита	первый	второй (самок, отдавших икру
Численность поголовья самок по классам, гол.	15	53	112	23	201
%	7,5	26,4	55,7	10,4	100
Колебания в шкале оценки по количеству икры, г/кг массы самки	251-330	200-250	117-199	-	42,8-334,8

При промышленном использовании производителей применяют заводской метод воспроизводства и естественный нерест. При заводском методе широко используют разработанный нами экологический метод стимулирования созревания гонад в период преднерестового содержания самок и самцов [3, 4]. Это позволяет сократить срок преднерестовой подготовки, получать икру в более ранние сроки, снизить затраты гипофиза и повысить рабочую плодовитость самок.

В 2002 г. относительная рабочая плодовитость самок в возрасте 5 полных лет класса элитарекорд колебалась от 238 до 329 г/кг массы самки, класса элита - от 200 до 225, а у рыб первого и второго классов была в пределах соответственно 117-195 и 42,8-91,9 г/кг.

Достоверных возрастных различий по этому признаку не выявлено. Максимальное количество икры, единовременно выметанной самкой, достигало 32,2-34,5% от массы тела. Однако численность самок в нерестовом стаде, отдавших икры более 300 г/кг массы, была только 1,8 %; самок с величиной ОРП 200-250 - 26,4 %.

Всего самки класса элита-рекорд и элита составляли по численности 33,9 % численности нерестового стада. Преобладали по численности особи первого класса, их было 55,7 %. Особи второго класса со значением ОРП 100 г и менее относятся к категории брак и подлежат выбраковке.

Ежегодно из стада половозрелых самок по несоответствию статусу племенных не только по плодовитости, но и по скорости роста, развитости морфологических и других признаков из племенного стада выводится 25 % особей. Отбор с высоким селекционным дифференциалом приводит к снижению вариабельности самок до 3,8 %. Коэффициент вариации по рабочей плодовитости в среднем по стаду остается на уровне 20 % и более (табл. 3).

Высокий коэффициент вариации плодовитости позволяет предполагать возможность дальнейшего повышения этого признака прямым массовым отбором, а также закрепления в потомстве скороспелости рыб.

Плодовитость самок алтайского зеркального карпа без учета возраста

Показатели		Абсолютная рабоч	ая плодовитость,	Относительная рабочая плодовитость,		
		тыс. икринок на 1 самку		тыс. икринок на 1 кг массы самки		
		F_3	F_7	F_3	F_7	
	$\overline{X} \pm S\overline{x}$	402,68±14,37	838,09±2,612	123,33±3,78	157,61±4,72	
	σ	151,41	179,07	33,84	32,37	
Γ	Cv	37,66	21,37	32,30	20,54	

Таблина 3

В настоящее время алтайский зеркальный карп соответствует целевому стандарту породы по следующим репродуктивным качествам: возраст перевода в основное стадо для самок - 4 года, для самцов - 3 года; общая масса в данном возрасте: самки - 3,6, самцы - 2,9 кг; относительная рабочая плодовитость - 180 г икры/кг массы самки; выход 10-дневных личинок от одной самки при естественном нересте - 150 тыс. шт.

Для выявления наследственных свойств товарных сеголетков и двухлетков от племенных производителей необходимы оптимально возможные условия обитания в водоемах, поэтому в систему выращивания был включен экологический мониторинг.

Выявлено резкое снижение растворенного в воде кислорода, в июле - августе совпадающее с наиболее благоприятным в местных условиях температурным режимом. Устранить это противоречие позволила разработанная система внесения минеральных удобрений с включением извести

как обязательного компонента [5]. Внесение извести рассматривалось не только как средство, повышающее минерализацию органического вещества, но и как источник кальция, участвующего в обмене веществ. Внесение минеральных веществ в воду прудов многократно и малыми дозами устраняет резкие скачки в кислородном балансе водоемов и способствует повышению их продуктивности [6].

Выращивание рыб до 1990 г. осуществляли при повышенных плотностях посадки и кормлении гранулированными рыбными кормами (с уровнем протеина 24 %) по современным нормативам для первой и второй зон рыбоводства [7]. В последующие годы в связи с резким повышением цен на комбикорма сеголетков выращивали на естественных кормах и с кормлением в июле августе дроблеными зерноотходами и отрубями. Удобрения применяли на основании данных гидрохимического контроля. Различия в темпе роста и выходу рыбопродукции приведены в табл. 4.

Таблица 4 Рыбоводные показатели при выращивании сеголетков алтайского зеркального карпа при разных способах кормления

	Методы интенсификации				
Показатель	комбикорм гранулированный (уровень протеина 24 %)	естественный корм	дробленые зернооотходы и отруби		
Плотность посадки сеголетков, тыс. шт./га	32	6	23,1		
Средняя масса сеголетка, г	40	65	24,6		
Затраты корма на единицу прироста массы	2,3	-	2,25		
Рыбопродуктивность, т/га	1,2	0,39	0,569		
Расход извести за сезон, т/га	0,8	0,8	0,8		
Расход азотно-фосфорных удо- брений на 1 т рыбы, т	0,4	0,4	0,4		

При интенсивной технологии и нормативной плотности посадки средняя масса сеголетка достигала 40 г, а рыбопродуктивность при сниженных затратах кормов - 1,28 т/га.

На естественных кормах в высококормных прудах с кислородным режимом не менее 4 мг/л в течение всего сезона и при плотности посадки по сеголеткам 6 тыс. экз./га темп их роста был выше норматива в 2 раза при рыбопродуктивности 390 кг/га.

При кормлении отрубями в июле и дроблеными зерноотходами и фуражным зерном в июле - сентябре при плотности посадки 23,1 экз./га сеголетки достигают стандартной средней штучной массы.

При выращивании на естественных кормах потребность в прудовой площади в сравнении с

нормативом возрастает в 5,3 раза. Кормление отходами переработки зерна и дроблеными зерноотходами и фуражным зерном позволяет вырастить стандартный посадочный материал при увеличении площади выростных прудов в 1,4 раза.

В сложившихся экономических условиях необходима разработка новых нормативных материалов по выращиванию рыбопосадочного материала высокого качества.

Товарных двухлетков алтайского зеркального карпа по интенсивной технологии выращивали с плотностью посадки, близкой к нормативной (5-6 тыс. экз./га) в высоко- и среднепродуктивных прудах и ниже нормативной (3,4-4,0 тыс. экз./га) в низкопродуктивных (табл. 5).

Таблица 5 Рыбоводно-биологические показатели выращивания товарных двухлетков алтайского зеркального карпа

	Xa	Норматив по высоко-		
Показатель	высокопродук-	среднепродук-	низкопродук-	продуктивным прудам
	тивные	тивные	тивные	
Минимальное содержание раство-	6,0	5,0	4,0	до 2
ренного в воде кислорода, мг/л				
Затраты гранулированного корма на	2,6	2,8	3,0	2.5
1 т прироста товарной рыбы, т				3,5
Затраты за сезон, т/га				
извести	1,0	1,0	1,2	до 2
азотно-фосфорных удобрений	0,4	0,4	0,4	0,45
Плотность посадки годовиков, тыс. т/га	5,5-6,0	5,0-5,4	3,4-4,0	до 5,3
Средняя масса годовика, г	40-50	40-50	40-50	25
Выход двухлетков из русловых пру-	75-80	70-75	70-75	80-85
дов, % от посадки годовиков			/0-/3	
Рыбопродуктивность, кг/га	1800-2000	1400-1500	1000-1200	до 2000

При оптимальном кислородном режиме в сочетании с рыбопосадочным материалом высокого качества и соответствии состава комбикормов биологическим потребностям двухлетков достигается нормативная для высокопродуктивных водоемов рыбопродуктивность. При этом затраты кормов по высокопродуктивным прудам снижаются на 25,7, по среднепродуктивным - на 20, по низкопродуктивным - на 14,2 %. Снижение затрат кормов на прирост массы рыбы обеспечивается высокой усвояемостью кормов алтайским зеркальным карпом, подтвержденной физиологическими исследованиями по стандартному обмену [8, 9]. В процессе селекции от первого поколения к пятому коэффициент интенсивности питания увеличился на 34, ассимиляции - на 29 %.

В 1990 г. средняя продуктивность нагульных прудов в ОАО «Племрыбхоз «Зеркальный» Алтайского края была 1,85 т/га при затратах гранулированных кормов на единицу прироста массы, равных 2,4. В 1994 г. при кормлении дробленым фуражным зерном с 16 % протеина и кормовом коэффициенте 2,4 рыбопродуктивность снизилась до 1,20 т/га (35,1 %).

Снижение рыбопродуктивности при использовании несбалансированных по питательным веществам и другим компонентам кормов вызывает необходимость изыскивать новые способы выращивания товарного карпа.

При выращивании алтайского зеркального карпа в озерах региона создания породы совместно с рыбами местной фауны и пелядью рыбопродукция по карпу колеблется от 90 до 150 кг/га.

Высокий темп роста карпа сохраняется и при интегрированных технологиях.

В нашем эксперименте на нагульных карповых прудах совместно с карпом выращивали гусей, при этом карпов вселили в пруды 25 апреля, а гусей месячного возраста - 1 июля. Кормили карпа и гусей 77 дней, в первый период рассыпным комбикормом, во второй - фуражным зерном, содержание протеина в кормах в среднем за сезон составило 17,5 %. Затраты кормов в бикультуре были ниже по сравнению с нормативом для племенных хозяйств на 28,4 %. В сравнении с вариантом монокультуры, в бикультуре карпа отмечено повышение темпа и коэффициента роста соответственно на 10,7 и 14,3 % и рыбопродуктивности на 210 кг/га (табл. 6). Выход биомассы гусей составил в среднем 895,5 кг/га при затратах комбикорма ниже нормативных на 24 %. Совокупная продукция (рыба - гуси) в вариантах бикультуры в среднем составила 3081 кг/га.

Совместное выращивание рыбы и гусей способствует повышению биологической продуктивности гидробиоценоза. Остаточная биомасса зоопланктона в разных вариантах бикультуры составляла 50,31 и 29,27 г/м³, в монокультуре - 5,22 г/м³. Снижается зарастаемость прудов высшей водной растительностью и нитчатыми водорослями. Исключается необходимость проведения дорогостоящих мелиоративных работ и внесения минеральных веществ. Повышается эффективность использования прудовой площади. Снижаются затраты труда (рыбу и гусей выращивает одна бригада рабочих).

Эффективность бикультуры товарный карп - гуси

Показатель	Плотность гусей в (Vone p Monorque en mo	
Показатель	215	238	Карп в монокультуре
Плотность двухлетков карпа, тыс. экз./га	5,53	5,4	5,7
Рыбопродуктивность, кг/га	2150	2110	1920
Средняя масса двухлетка, г	388,8	391	336,8
Продолжительность кормления, дней	77	77	77
Коэффициент роста карпа	2,89	2,9	2,48
Остаточная биомасса зоопланктона, г/м ³	50,11	29,27	5,22
Выход биомассы гусей, кг/га	935,7	855	-

Полученные результаты по выращиванию товарного карпа в озерах и прудах при интегрированных технологиях позволяют рекомендовать

их внедрение в производство на юге Западной Сибири.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Иоганнсен В.Л. О наследовании в популяциях и чистых линиях / В.Л. Иоганнсен. М.; Л.: Огиз-Сельхозгиз, 1935. - С. 25-79.
- 2. Дубинин Н.П. Общая генетика / Н.П. Дубинин. 2-е изд. М.: Наука, 1976. 572 с.
- 3. А.с. №1519605 СССР, МКИ А 01 К 61/20 Способ получения половых продуктов у самок карпа при заводском воспроизводстве / З.А. Иванова, И.В. Морузи, Л.С. Жукова (СССР) № 4311396; Заявл. 08.09.1987 // Открытия. Изобретения. 1989. №41. С.6.
- 4. А.с. №1540751 СССР, МКИ А 01 К 61/20 Способ получения половых продуктов у самцов карпа при заводском воспроизводстве / З.А. Иванова, И.В. Морузи, Л.С. Жукова (СССР) № 4311396; Заявл. 30.09.1987 // Окрытия. Изобретения. 1990. №5. С. 7.
- А.с. 1199223 СССР, МКИ А 01 К 61/20. Способ удобрения рыбоводных прудов / З.А. Иванова, И.В. Морузи, Р.И. Огнева (СССР). - № 3701810; Заявл. 17.02.1984 // Открытия. Изобретения. -1985. - № 47. - С. 6.
- 6. Морузи И.В. Биологические особенности и продукция сиговых в карповых прудах юга Западной Сибири: дис. ... канд. биол. наук / И.В. Морузи. Иркутск, 1985. 152 с.
- 7. Сборник нормативно-технологической документации по товарному рыбоводству / MPX СССР, ВНПО по рыбоводству. М., 1986. Т.1. 260 с.
- 8. Иванова З.А. Биологические особенности карпа Западной Сибири и научные основы технологии прудового рыбоводства: дис. . . . д-ра с.-х. наук / З.А. Иванова. М., 1984. 350 с.
- 9. Черноротов С.П. Интенсивность обмена у молоди сарбоянского и алтайского карпов /С.П. Черноротов // Прогрессивные технологии в животноводстве Сибири: сб. науч. тр. / ВАСХНИЛ. Сиб. отд-ние. СибНИПТИЖ. Новосибирск, 1989. С. 126-128.

INDUSTRIAL APPLYING OF THE ALTAI MIRROR CARP

I.V. Moruzi, E.V. Pishchenko

Key words: the Altai mirror carp, breeding, fish cultural and biological characteristics.

The article shows results on breeding marketable carp in the lakes and ponds while applying integrative technologies.