УДК 639.2.053.7

РАЗМЕРНО-ВОЗРАСТНАЯ ХАРАКТЕРИСТИКА РЕЧНОГО РАКА (ASTACUS LEPTODACTYLUS) ИЗ ВОДОЕМОВ АЛТАЙСКОГО КРАЯ

А.Ю. Лукерин,

Алтайский филиал ФГУП «Госрыбцентр» Барнаул, Россия E-mail: artemia@alt.ru

Аннотация. Проанализированы данные многолетних наблюдений за состоянием популяций речного рака в модельных водоемах. Приводятся величины морфометрических признаков, половая структура популяции и ее плотность. На основании представленных данных проведена оценка общего запаса и объемов возможного вылова данного биоресурса. Отмечены основные направления дальнейшего изучения речного рака в водоемах Алтайского края.

Ключевые слова: речной рак, линейные размеры, масса тела, возрастная структура.

DIMENSIONAL AND AGE CHARACTERISTICS OF THE CRAWFISH (ASTACUS LEPTODACTYLUS) FROM BASINS OF ALTAY TERRITORY

A.J. Lukerin

Summary. The data of long-term observations over condition of populations of a crawfish in modelling basins are analyzed. Magnitudes morfo-metric signs, sexual structure of population and its gravity are resulted. On the basis of the introduced data the assessment of the general store and volumes of a possible catch of the given bioresource is conducted. The basic directions of the further study of a crawfish in basins of Altay territory are marked.

Keywords: a crawfish, the linear dimensions, body mass, age structure.

Территория Алтайского края богата разнообразными водными объектами, пригодными для рыбохозяйственного использования. Общий рыбохозяйственный фонд водоемов высшей и первой категории составляет 4276 км речных и 634 км² озерных систем. На водотоках равнинной территории Алтайского края построено 2,5 тыс. га спускных нагульных и 0,5 тыс. га питомных рыбоводных прудов [1].

В конце XX столетия, с переходом к рыночной экономике, многие рыбодобывающие организации обанкротились и прекратили существование, другие из-за слабой материально-технической базы не в состоянии эффективно вести промысел. Вследствие этого многие водные объекты оказались без присмотра, ихтиофауна вырождалась, материально-техническая часть расхищалась. В настоящее время наблюдается изменение сложившейся ситуации в положительном направлении. Все больше частных пользователей становятся заинтересованными

в развитии рыбоводной отрасли в крае. Большим спросом пользуются небольшие озера, пруды и водохранилища. Основная цель пользователей – ведение комплексного рыбоводного хозяйства. В качестве объектов выращивания в настоящее время выступают не только ценные виды рыб, все больше пользователей проявляют желание к вселению в водоемы речного рака. Потребляя неиспользуемые рыбой кормовые ресурсы и не являясь трофическим конкурентом ихтиофауне, речной рак закономерно вызывает научный и практический интерес [1]. Поскольку в настоящее время на территории края нет организованных маточных стад речного рака, посадочным материалом служат особи естественных популяций.

Речной рак на территории Алтайского края появился не так давно. Первая зафиксированная в научной литературе поимка рака на Алтае отмечена зоологом К.Ф. Кеслером в 1869 г. в городском пруду реки Барнаулки. Основная волна заселения раками Верхней Оби прошла в конце 70-х гг. прошлого века. Первый посадочный материал был доставлен с реки Сысоки Краснодарского края и был интродуцирован в озеро Большой Уткуль и Склюихинское водохранилище [2]. В последующем речной рак самостоятельно расселился по рекам Алею и Уткулю в русло реки Оби. С каждым годом география речного рака в крае все больше расширялась. В настоящее время устойчивые популяции сформировались в озерах Кулундинской, Бурлинской, Бийско-Чумышской, Барнаульской систем, реках Оби, Кулунде, Бурле, Алее.

Но несанкционированное переселение речного рака в водоем может

иметь отрицательные последствия для экосистемы. В связи с этим изучение экологии и биологии речного рака в водоемах Алтайского края является перспективным направлением для развития аквакультуры.

Сотрудники Алтайского отделения ФГУП «ГОСРЫБЦЕНТР» занимаются детальным изучением популяций речного рака с 2004 г. Основной приоритет отводится оценке численности популяции для определения объемов возможного вылова. Параллельно идет исследование экологии и биологии речного рака в водоемах Алтайского края.

Нами были изучены популяции речного рака из водоемов Алтайского края. В результате проведенных исследований было установлено, что это представители рода *Astacus*, вида A. *leptodactylus Eschscholtz* [3].

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Изучение морфометрических показателей речного рака было проведено в 2006–2012 гг., на особях, выловленных из озер Песчаное, Мостовое, Горькое-Перешеечное, Большой Уткуль и Гилевского водохранилища.

Нами была установлена масса особей, взвешивание проводили на электронных весах марки CAS MWP 300 с точностью до 0,1 г. Линейные размеры определяли с помощью штангенциркуля с точностью до 1 мм. В научной литературе и практических руководствах пользуются полной, так называемой зоологической, длиной, от острия рострума до конца хвостовой пластинки, как общепринятым измерением. Длину рака измеряли в его положении спиной вверх,

РЫБОВОДСТВО И РЫБНОЕ X03ЯЙСТВО • 6 • 2015 27

щетинки плавня при измерении во внимание не принимались [4].

Сбор материалов для изучения плодовитости самок проводили весной путем сбора икры с плеопод самок с последующей фиксацией. При сборе учитывалось количество икринок, оставшихся на плеоподах [6]. Обработка фиксированного материала проводилась в камеральных условиях.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В результате проведенного анализа и последующей математической обработки было установлено, что самые крупные речные раки обитают в озере Горько-Перешеечном Барнаульской озерной системы. Средняя длина самок составляет 145 мм, самцов — 147 мм, средняя масса — 61,1 г и 82,9 г соответственно. Самые мелкие в озере Большой Уткуль Бийско-Чумышской системы: средняя длина самок — 104 мм, самцов — 123 мм, средняя масса — 29,8 г и 58,8 г (табл. 1).

Однако наиболее крупные самцы обитают в Гилевском водохранилище, их средняя длина достигает 152 мм, при этом длина самок на 15 мм меньше — 137.

Половая структура отлавливаемой части популяции весьма непостоянна и колеблется в зависимости от времени и места лова, применяемых снастей. Кроме того, на половом составе уловов отражаются различия в сроках линьки: во время линьки самок в уловах преобладают самцы и наоборот [5]. За период исследований соотношение между самками и самцами было непостоянным, но можно выявить некоторые закономерности (рис.).

В озерах Большой Уткуль и Горько-Перешеечном наблюдается большое количество крупных особей в уловах, причем при увеличении размеров увеличивается численность крупных животных. На основании этого можно сделать вывод о том, что в этих водоемах средняя продолжительности жизни самок меньше, чем у самцов. В озерах Мостовом и Песчаном при построении кривой наглядно видны провалы в размерных рядах, т.е. доля среднеразмерных самцов резко снижается. Вероятно, это уменьшение численности самцов происходит в результате промышленного лова в послезапретный период, когда самки рака после выведения потомства

Таблица 1 Основные морфометрические признаки речного рака в модельных озерах Алтайского края, 2006–2012 гг.

Волоем	Пол	Длина, мм		Масса, г			
Бодоем		Колебания	Среднее	Колебания	Среднее		
Оз. Песчаное	4	100–168	129±7	22,3-108,4	57,4±12,2		
Оз. Песчаное	8	91–187	133±9	21,9–202,1	74,7±19,3		
Оз. Мостовое	9	77–166	104±10	11,0–101,3	56,6±11,8		
O3. MOCTOBOE	8	74–210	127±14	10,8–317,1	69,1±16,3		
Оз. Горькое-	9	104–182	145±10	30,2-138,7	61,1±14,7		
Перешеечное	8	108–220	147±16	30,8–230,4	82,9±18,6		
Оз. Большой Уткуль	9	96–175	104±14	20,2-76,8	29,8±12,2		
	3	67–202	123±16	33,9-190,2	$58,8\pm20,3$		
Гилевское	2	109–181	137±12	28,4-120,0	58,3±11,3		
водохранилище*	3	105–196	152±19	32,2–248,2	89,5±17,6		
* В Гилевском водохранилище в 2012 г. лов рака не производился.							

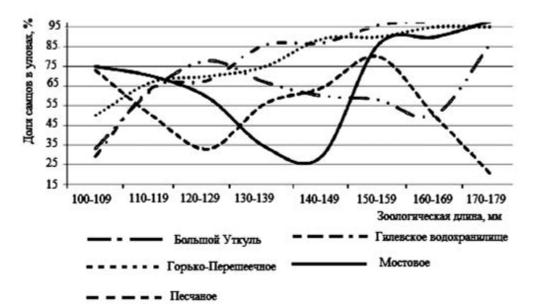


Рис. Доля самцов в уловах речного рака в модельных водоемах Алтайского края, 2006–2012 гг. (В Гилевском водохранилище в 2012 г. лов рака не производился)

переходят к процессу линьки. В Гилевском водохранилище наблюдается уменьшение количества самцов после достижения длины 130 мм.

К повышению смертности самок в раннем возрасте приводит сочетание нескольких факторов разного происхождения: зарегулированного гидрологического режима и активности хищников в период вынашивания самками науплиев.

Число яиц у самок речного рака колебалось от 147 до 523 шт. Средняя плодовитость значительно колеблется по годам, но в целом различия

между водоемами незначительны. Наибольшая плодовитость самок отмечена в озере Мостовом (табл. 2).

Наиболее важным параметром, с точки зрения хозяйственного использования, является плотность популяции. Значение плотности со знанием массы объекта дает возможность оценивать общий запас речного рака в водоеме и объемы его возможного вылова. Наименьшая плотность популяции (44 экз./га) наблюдается в озере Горько-Перешеечном (табл. 3). Главная причина столь низкой численно-

Таблица 2 Средняя плодовитость самок речного рака в модельных водоемах Алтайского края, шт.

_	Модельные водоемы							
Год наблюдения	оз. Песчаное	оз. Мостовое	оз. Горько- Перешеечное	оз. Большой Уткуль	Гилевское водохранилище			
2006	258±47	343±22	287±21	327±32	294±62			
2007	312±23	387±34	298±18	343±28	307±51			
2008	220±18	326±29	305±13	392±25	326±44			
2009	365±62	374±42	327±22	316±33	343±63			
2010	372±53	352±30	296±30	275±26	317±12			
2011	330±28	393±27	254±17	253±37	306±29			
2012	307±26	347±41	303±26	266±19	_			
Среднее	309±32	360±38	296±33	310±28	315±57			

Таблица 3 Плотность популяции и расчет объемов возможного вылова речного рака в модельных водоемах Алтайского края, 2011

Водоем	Площадь водоема, га	Плотность популяции, экз./га	Численность, тыс. экз.	Средняя масса особи, г	Общий запас, т	Объем возможного вылова, т
Оз. Песчаное	2700	416	1124,4	66,7	75	30
Оз. Мостовое	3730	1485	5538,0	63,2	350	140
Оз. Горько-	4540	44	201,9	74,3	15	6
Перешеечное						
Оз. Большой Уткуль	1000	213	213,2	46,9	10	4
Гилевское водохра-	6300	114	720,4	69,4	50	20
нилище						

сти – ограниченная кормовая база. Основной пищей для речного рака является мягкая высшая водная растительность, а водоем подвержен бордюрному зарастанию прибрежными тростниково-камышовыми ассоциациями. Невысокая численность популяции наблюдается и в Гилевском водохранилище, что связано с особенностями рельефа дна водоема, за счет которого снижается полезная площадь. На озере Мостовом в настоящее время наблюдается самая высокая плотность популяции речного рака – 1485 экз./га, ввиду чего данный водоем подвергается наибольшему промыслу.

В настоящее время работы по изучению популяций речного рака продолжаются. В частности, происходит дополнение ареала обитания этого вида новыми водоемами. Сотрудниками института производится сбор материала для изучения особенностей питания речного рака в разнотипных водоемах Алтайского края. Анализируется влияние внешних факторов среды на темпы роста, сроки размножения и линьки. Попутно проводятся работы по определению возможности интродукции речного рака в другие водоемы края.

ЛИТЕРАТУРА

- 1. Водоемы Алтайского края: биологическая продуктивность и перспективы использования. — Новосибирск: Наука, 1999. — 285 с.
- 2. Соловов В.П. Триады малого гидрокосма: артемия, гаммарус и другие обитатели сибирских водоемов. Новосибирск: Наука, 2003. 176 с.
- 3. *David M.* Holdich Identifying crayfish in British waters // Crayfish Conservation in the British Isles. Leeds, 2009. P. 147–164.
- 4. Будников К.Н., Третьяков Φ . Φ . Речные раки и их промысел. М.: Пищепромиздат, 1952. 96 с.
- 5. Гулиева Ф.Р. Особенности размножения длиннопалого речного рака (Astacus leptodactylus Esch.) в условиях Мингечаурского и Варваринского водохранилищ, Азербайджан // Вісник Харківського національного університету імені В.Н. Каразіна. Серія: біологія. Харків, 2010. Вип. 11. № 905. С. 127—132.
- 6. Черкашина Н.Я. Сборник инструкций по культивированию раков и динамике их популяций. Ростов н/Д: Медиа-полис, 2007. 118 с.