МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФГБОУ ВО «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕНЕТИКИ, БИОТЕХНОЛОГИИ И ИНЖЕНЕРИИ ИМЕНИ Н.И. ВАВИЛОВА»

VIII Национальная научно-практическая конференция с международным участием

СОСТОЯНИЕ И ПУТИ РАЗВИТИЯ АКВАКУЛЬТУРЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ УДК 639.3:639.5 ББК 47.2 С23

Редакционная коллегия: Поддубная И.В., Руднева О.Н., Кузнецов М.Ю., Гуркина О.А.

Состояние и пути развития аквакультуры в Российской Федерации: материалы VIII национальной научно-практической конференции с международным участием, Керчь, 4-6 октября 2023 г. / под ред. И.В. Поддубной; Вавиловский университет. — Саратов, 2023. — 259 с.

ISBN 978-5-7011-0832-3

В сборнике материалов VIII национальной научно-практической конференции с международным участием приводятся результаты исследования по актуальным проблемам аквакультуры, в рамках решения вопросов продовольственной безопасности, ресурсосберегающих технологий производства рыбной продукции и импортозамещения. Для научных и практических работников, аспирантов и обучающихся по укрупненной группе специальностей и направлений подготовки 35.00.00 сельское, лесное и рыбное хозяйство.

Статьи даны в авторской редакции в соответствии с представленным оригинал-макетом.

ISBN 978-5-7011-0832-3

© ФГБОУ ВО Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова, 2023 © Авторы статей, 2023

Научная статья

УДК: 639

Выращивание африканского клариевого сома в индустриальных условиях с применением кормовой добавки «Абиотоник»

Максим Дмитриевич Ермаков¹, Пётр Сергеевич Тарасов², Ирина Васильевна Поддубная¹

¹Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И.Вавилова,

г.Саратов

 2 Нижегородский государственный агротехнологический университет, г. Нижний Новгород

Анномация. В данной работе проведён анализ влияния на продуктивность, товарные качества и физиологическое состояние молоди клариевого сома при выращивании в аквариумах с использованием в питании комплексной витаминномикроэлементной кормовой добавки «Абиотоник» (синтезирована и представлена ООО Фирма «А-БИО», наукоград Пущино, Московской области).

Ключевые слова: клариевый сом, рыбоводство, гидролизат соевого белка, Абиотоник. установка замкнутого водоснабжения, полипропиленовые аквариумы

Growing African clariid catfish in industrial conditions using the feed additive "Abiotonic"

Maxim' D. Ermakov¹, Pyotr' S. Tarasov², Irina' V. Poddubnaya¹

¹Saratov State University of Genetics, Biotechnology and

Engineering named after N.I. Vavilov, Saratov

²Nizhny Novgorod State Agrotechnological University, Nizhny Novgorod

Abstract. In this work, an analysis was carried out of the effect on the productivity, marketability and physiological state of juvenile clarium catfish when grown in aquariums using the complex vitamin-microelement feed additive "Abiotonic" in the diet (synthesized and presented by LLC Firm "A-BIO", science city Pushchino, Moscow region).

Keywords: clariid catfish, fish farming, soy protein hydrolysate, Abiotic. installation of closed water supply, polypropylene aquariums

Введение.

Клариевый сом (*Clarias gariepinus*) перспективный объект индустриального рыбоводства благодаря неприхотливости, высокой плотности посадки и высоким темпам роста. В природе клариевый сом может достигать размеров до 170 см. в длину и массой 60 кг, потребителям же рыба попадает весом от 500 г.

до 1,5 кг. (оптимальная весовая категория для употребления в пищу) и длиной 35–55 см.

Экономически целесообразно выращивание в установках замкнутого водоснабжения (далее УЗВ) посадочного материала, а также товарной продукции клариевого сома. Благодаря быстрому росту, устойчивости к неблагоприятным факторам среды и качественному мясу, клариевый сом стал одним из самых распространенных объектов выращивания во многих странах мира, в первую очередь это относится к странам тропического пояса (фермы Южной Африки, большинство которых находится в районе Восточного Трансвааля). Сома там выращивают в прудах и рыбопродуктивность достигает 25–40 ц/га [6].

Для повышения темпов роста и качества конечной продукции мы решили использовать кормовую добавку «Абиотоник», которая является ростоиммуностимулятором и доказала свою эффективность при выращивании осетровых. В состав добавки входит гидролизат соевого белка, незаменимые аминокислоты, витамины и минеральные вещества.

Так многолетние исследования по использованию биологически активных и кормовых добавок на основе гидролизата соевого белка проводимые нами с карпом, радужной форелью и осетровыми при различных условиях содержания, доказали свою перспективность применения в рыбоводстве, но исследование влияния таких добавок на тепловодные виды рыб, такие как клариевый сом не проводилось.

Методика и методы исследования. Нами проводится прогнозируемый эксперимент по изучению эффективности использования кормовой добавки «Абиотоник» на продуктивность клариевого сома (*Clarias gariepinus*) при выращивании в аквариумной установке на базе научно-исследовательской лаборатории «Прогрессивные биотехнологии в аквакультуре» ФГБОУ ВО «Вавиловский университет».

Для прогнозируемого опыта отобрали 40 особей клариевого сома средней массой 67 г и разместили их по 10 штук в 4 полипропиленовых аквариума объемом 250 литров каждый.

Гидрохимический режим воды контролируется в течении всего эксперимента, температуру воды, pH, содержание растворенного кислорода определяется ежедневно в 12:00 ч.

Кормление рыбы производится 3 раза в день, в 9:00, в 13:00 и в 17:00ч., полнорационными комбикормами с размером гранул 4 мм, в соответствии со схемой производственного опыта (табл. 1).

Таблица 1 – Схема прогнозируемого опыта

	T
Группа	Характер кормления
Контрольная	Полнорационный комбикорм (ПК)
1-опытная	ПК с добавкой «Абиотоник» из расчета 0,5 мл на 1 кг массы рыбы
2-опытная	ПК с добавкой «Абиотоник» из расчета 1 мл на 1 кг массы рыбы
3-опытная	ПК с добавкой «Абиотоник» из расчета 1,5 мл на 1 кг массы рыбы

Температура в аквариумах в период опыта поддерживается на оптимальном уровне для рыб $+28,0\pm1,0$ °C.

Расчет суточной дачи корма производится по общепринятой методике, при этом учитывается температура воды, содержания растворенного кислорода и массу рыбы. Норма кормления корректируется каждые 7 дней в соответствии с контрольными взвешиваниями.

На основе предыдущих исследований был проведён анализ и разработка доз и способа скармливания препаратов на основе гидролизата соевого белка.

Так оптимальная норма ввода панкреатического гидролизата соевого белка в рационе карпа составила 0,75 мл на 1 кг живой массы [1], у радужной форели это значение было 1,0 мл на 1 кг ихтиомассы [2]. Установлено, что при введении в рационы осетров 1,0 мл кормовой добавки «Абиотоник» на 1 кг массы рыбы были достигнуты наивысшие приросты массы рыб, не было отмечено негативного влияния на развитие, состояние внутренних органов и биохимические параметры крови [3,4,5].

Исходя из вышеперечисленных данных нами были разработаны экспериментальные нормы скармливания препарата клариевому сому, приведённые в таблице 1, согласно первым полученным данным, группы в которых происходит кормление с использованием препарата «Абиотоник», исследуемые показатели по сравнению с контрольной группой выше.

Список источников

- 1. Гусева, Ю. А. Оценка пищевой ценности карпа при выращивании в индустриальных условиях / Ю. А. Гусева, А. Н. Яковлев, А._В. Евтеев // Прорывные научные исследования как двигатель науки: сборник статей Международной научно-практической конференции (4 декабря 2018 г., г. Магнитогорск). В 3 ч. Ч. 3 / Уфа: ОМЕГА САЙНС. 2018 С. 189-192.
- 2. Гусева, Ю.А. Результаты выращивания рыб ценных пород с использованием в кормлении гидролизата соевого белка / Ю. А. Гусева, И._П._Федоров // Актуальные проблемы ветеринарной медицины, пищевых и биотехнологий: Материалы Международной научно-практической конференции / под редакцией А.В. Молчанова, В.В. Строгова. Саратов: Саратовский ГАУ. 2018 С. 172-177.
- 3. Поддубная И.В., Сравнительная характеристика функциональной активности щитовидной железы молоди ленского осетра при различных дозах органического йода/ И.В. Поддубная, А.А. Васильев, И.В. Акчурина, О.Е Вилутис, П.С. Тарасов // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2015. Т. 224. 4. С. 178-181.
- 4. Поддубная И.В., Эффективность выращивания гибридов осетровых рыб с использованием в рационе биологически активных веществ/ И. В. Поддубная, А.А. Васильев, В. В. Сучков// Аграрный научный журнал. 2022. № 2. С. 50–53.
- 5. Influence of iodine on efficiency of fish / Vasilev A.A., Poddubnaya I.V., Akchurina I.V., Vilutis Ol.Ye., Tarasov P.S.// Journal of Agricultural Science. 2014. T. 6. №10. C. 79.

- 6. Sullivan D. Catfich farming in South Africa // Aquacult. Mag. 1993. V.19. N_{2} 5. P. 28–44.
 - **©** Ермаков М. Д., 2023
 - **©** Тарасов П. С., 2023
 - © Поддубная И. В., 2023