НЕКОТОРЫЕ ОСОБЕННОСТИ ВОЗРАСТА И ТЕМПА POCTA ПИЛЕНГАСА (MUGIL SOIUY BASILEWSKY) B AЗОВО-ЧЕРНОМОРСКОГО БАССЕЙНЕ

В. В. Коркош

Рассмотрено строение спилов пиленгаса и годовых отметок роста, что позволило уточнить время их закладки. Предложено описание роста пиленгаса из разных районов Азово-Черноморского бассейна и дальневосточных морей. Рост описывается уравнением Берталанфи. Установлено, что в новых для него районах акклиматизации пиленгас растет значительно быстрее, чем у себя на родине. Созревание происходит гораздо раньше, чем в материнском водоеме. Размерно-весовые характеристики этого вида в разных районах Азово-Черноморского бассейна несколько отличаются друг от друга.

Материал и методика

Пиленгас – результат успешной акклиматизации в Азово-Черноморском бассейне с 1971 г., когда была доставлена первая партия этих рыб с Дальнего Востока (Амурский залив). В новых для него условиях пиленгас продемонстрировал высокую живучесть и экологическую пластичность. В результате длительных акклиматизационных работ была сформирована самовоспроизводящаяся азовская популяция, и в 1992 г. уже наблюдался массовый нерестовый ход пиленгаса из Азовского моря в предпроливье Черного моря [4].

Популяция достигла высокой численности и в 1994 г. была рекомендована к промысловому освоению.

В интересах наиболее рационального использования его запасов и разработки мер охраны, необходимо изучение таких важнейших показателей стада, как темп роста и возраст. Опубликованные сведения, характеризующие указанные показатели, – фрагментарны, отрывочны [6, 7] и не дают полного представления о данном вопросе.

В настоящей работе сделана попытка обобщить имеющиеся материалы по возрастному и размерно-весовому составу пиленгаса различных районов Азово-Черноморского бассейна и сравнить их с аналогичными данными по дальневосточному региону [5].

Материалом для исследования служили спилы, изготовленные из грудных плавников пиленгаса, собранных в экспедициях ЮгНИРО (2007-2008 г.) в Азовском море и на контрольно-наблюдательных пунктах Азово-Черноморского бассейна. Всего было просмотрено 840 спилов. Срезы лучей выпиливались фрезой толщиной 0,2-0,5 мм на специально изготовленном приборе с использованием электродвигателя мощностью 340 вт и 3000 об./мин. Толщина получаемых срезов составляла 0,1-0,3 мм. Просматривались срезы под микроскопом МБС-1 в поляризованном свете в капле глицерина. Спилы лучей перед просмотром выдерживались в спирте или ацетоне, что обеспечивало их промывку от загрязне-

ния и частичное обезжиривание. Делались попытки использовать для просмотра возраста этих рыб чешую. Однако большая пористость ее центральной части, очень слабая выраженность годовых зон, а также большое количество дополнительных колец заставило нас отказаться от возрастного определения этих рыб по чешуе. При определении возраста по спилам лучей отбракована была лишь незначительная часть (не более 0,5 %).

Результаты и обсуждения

У пиленгаса на препаратах спила отчетливо видны небольшой пористый центр и чередующиеся светлые и темные зоны, которые интерпретируются нами как зоны роста. Их различная ширина соответствует различной скорости роста. Пористый центр при просмотре спилов не достигает первой зоны роста. Размер обычно уменьшается с увеличением возраста рыбы. Для установления времени закладки годового кольца была определена частота встречаемости первого прироста в различные сезоны. Наибольшее число проб, на краю которых был виден уже оформившийся годовой слой, приходится на зимне-весенний период — в феврале 17 %, в марте 28, в апреле 36 %. В мае, как правило, завершается формирование первого годового кольца. В июне-июле у отнерестившихся рыб уже просматривается едва заметный узкий прирост. Особенно отчетливо прирост выражен в осеннее и зимнее время. Годовое кольцо, по-видимому, формируется, когда рост рыб временно приостанавливается или значительно замедляется в зимний и весенний преднерестовый и нерестовый сезон.

На основе полученных оценок возраста в различных районах Азово-Черноморского бассейна были рассчитаны средние длины в каждой возрастной группе и выполнена оценка параметров уравнения роста Берталанфи [8] (табл. 1).

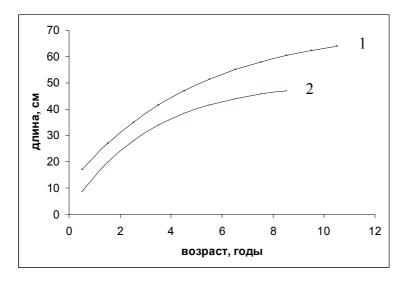

Рост пиленгаса в Азовском море, Керченском проливе и о.Сиваш характеризуется довольно близкими параметрами уравнения роста Берталанфи, поэтому

Таблица 1
Параметры уравнения Берталанфи для описания
линейного роста пиленгаса

Район	Константы						
	$L\infty$	k	t_0				
Азовское море	71,4	0,22	0,86				
Керченский пролив	71,5	0,23	0,87				
Озеро Сиваш	70,8	0,21	0,81				
Амурский залив	50,5	0,31	0,10				

для построения кривой линейного роста пиленгаса в новых для него районах акклиматизации использовались параметры уравнения роста этого вида в Азовском море. Графическое построение зависимости соответствующих па-

раметров роста пиленгаса в указанных районах и на родине вселенцев, по материалам Мизюркиной А. В. [5] (рисунок), показывает, что средние размерные показатели этих рыб в Азовском море по всем возрастным группам значительно превышают таковые в материнском дальневосточном водоеме (Амурский залив).

Линейный рост пиленгаса в Азовском море (1) и в дальневосточных морях (2)

В новом для него Азовском море, куда он был вселен в 70-х годах, пиленгас растет значительно быстрее, чем у себя на родине. Особенно отчетливо заметны расхождения размерно-возрастных показателей у старших возрастных групп. Условия обитания вселенца в Азово-Черноморском бассейне оказались для интродуцента намного привле-

кательней. В весовом отношении различия в темпе роста пиленгаса в вышеуказанных районах еще более велики (табл. 2).

В Азовском море и прилегающих к нему районах скорость весового роста этих рыб в 2-3 раза выше, чем в дальневосточных морях. Так 3-летки в новом для него районе достигали массы, аналогичной 6-7-леткам, обитающим в материнском водоеме. Б. Н. Казанский [2] оценивал пиленгаса в качестве перспективного объекта для акклиматизации и аквакультуры с большой потенцией роста. В новых, благоприятных для него условиях, происходит интенсивное наращивание массы тела, которое он [2] характеризовал, как «форсаж роста».

Естественно, если вид начинает успешно воспроизводиться в новой и благоприятной для него среде, то происходят адаптационные изменения в онто- и филогенезе, в том числе в его генетической структуре, что, в конечном итоге, может привести к внутрипопуляционной разобщенности [1], в новых для себя условиях. При этом он пока сохраняет такую специфическую особенность для него в южном регионе, как необычайную потенцию линейного и весового роста, что и определили новые черты биологии пиленгаса. Созревание его происходит раньше, чем в маточной популяции на Дальнем Востоке, где самцы созревают в возрасте 4 года, а самки на один год позже – в 5 лет, в то время как в Азовском море и прилегающих к нему регионах, по нашим материалам, самцы и самки созревают в возрасте 2+, при длине рыб 38-44 см, причем самцы несколько опережают самок в созревании гонад. Во время массового нерестового хода пиленгаса в Керченском проливе из Азовского моря в предпроливье Черного моря, в 2008 г., значительную часть уловов (25,4 %) составляли впервые созревающие рыбы, средней длиной 40,4 см, в возрасте 2+ лет. Из них 56,6 % составляли самцы и 43,4 % самки. Из анализа вышеприведенной табл. 2, для рыб Азово-Черноморского региона видно, что наибольший темп роста и максимальные приросты отмечаются на первых годах жизни, до наступления половой зрелости, причем весовой прирост наиболее велик в период полового созревания, в возрасте 2+.

 Таблица 2

 Размерно-весовые характеристики и возраст пиленгаса

Район,	Возраст,	L	L	L	При-	P	P	P	При-	N
автор	лет.	средн.	min	max	рост	средн.	min	max	рост	
Азов-	0+	16,0	12,7	18,2	16,0	0,25	0,20	0,33	0,25	4
ское	1+	30,5	24,1	35,5	14,5	0,38	0,38	0,54	0,13	18
море,	2+	38,4	30,0	46,8	7,9	1,14	0,76	1,62	0,76	150
наши	3+	44,1	35,4	54,0	5,7	1,38	1,17	2,30	0,24	142
данные	4+	47,7	40,2	58,6	3,6	1,93	1,52	2,74	0,55	121
	5+	51,2	45,1	60,4	3,5	2,28	1,61	2,86	0,35	66
	6+	54,5	50,3	63,7	3,3	3,00	2,18	3,80	0,72	10
	7+	58,3	58,0	61,4	3,8	3,75	3,20	4,45	0,75	3
	8+	61,0	60,1	62,6	2,7	3,90	3,36	4,47	0,15	3
	9+	63,0	60,6	65,3	2,0	3,80	3,70	3,90	-0,10	2
	10+	67,0	67,0	67,0	4,0	5,50	5,50	5,50	1,70	1
	Всего						·			520
Керчен-	0+	16,4	14,0	18,1	16,4	0,28	0,24	0,32	0,28	2
ский	1+	33,0	30,3	39,1	16,6	0,45	0,33	0,57	0,17	3
пролив,	2+	39,6	32,2	47,1	6,6	1,15	0,80	1,75	0,70	28
наши	3+	44,5	35,1	53,6	4,9	1,40	1,15	2,32	0,25	32
данные	4+	48,2	41,3	57,9	3,7	2,11	1,65	2,55	0,71	25
	5+	52,6	44,9	59,3	4,4	2,51	2,41	2,93	0,40	22
	6+	55,3	50,1	64,2	2,7	3,00	2,26	3,94	0,49	3
	7+	60,0	58,9	62,0	4,7	3,70	2,94	4,44	0,70	2
	8+	63,4	60,0	66,8	3,4	4,00	3,50	4,62	0,30	2
	9+	65,0	65,0	65,0	1,6	4,10	4,10	4,10	0,10	1
	Всего						·			120
Озеро	0+	17,0	13,2	17,9	17,0	0,36	0,26	0,33	0,36	12
Сиваш,	1+	33,6	26,1	36,8	16,6	0,48	0,36	0,58	0,12	27
наши	2+	39,8	32,6	46,2	6,2	1,20	0,83	1,71	0,72	61
данные	3+	44,3	36,0	52,4	4,5	1,36	1,20	1,94	0,16	34
	4+	48,6	42,1	57,6	4,3	1,58	1,40	2,42	0,22	16
	5+	53,5	46,0	58,0	4,9	2,37	1,62	2,75	0,79	13
	6+	55,7	51,1	62,4	2,2	2,84	2,14	3,97	0,47	5
	7+	60,1	58,0	65,0	4,4	3,42	3,25	3,68	0,58	3
	8+	63,6	63,6	63,6	3,5	3,61	3,61	3,61	0,19	1
	Всего									172
Дальне-	2+	18,9				0,062				15
восточ-	4+	33,4				0,360				15
ные мо-	5+	42,3				0,690				15
ря [3]	6+	48,1				1,100				15
	7+	53,1				1,410				15
	8+	56,6				1,790				15
	10+	66,0				2,700				1
	Всего									91

Рост рыбы в последующие годы заметно замедляется и несколько стабилизируется. Значительный прирост массы тела у особей старших возрастных групп может увеличиваться за счет половозрелых крупных рыб. Возрастной состав пиленгаса включает особей в возрасте до 10 лет, при длине 67 см и массе 5,5 кг, а в предыдущие годы — до 11 лет, при длине 78 см и массе 6,4 кг. В пределах отдель-

ных одновозрастных групп между крайними по величине особями колебания могут быть довольно значительными как по длине, так и по массе. Так у рыб в Азовском море в возрасте 3+ разница в длине составила 18,6 см, а масса – 1,13 кг, что может быть вызвано различными кормовыми условиями в разных биотопах Азовского моря. Еще более значительные колебания размерно-массового состава рыб одного возраста отмечены в разных районах Азово-Черноморского бассейна. Для младших возрастных групп пиленгаса (0+, 1+) наиболее комфортные условия окружающей среды находятся на оз. Сиваш, где они достигают более высоких размерно-весовых характеристик. Но несомненным фактом является и то, что параметры роста этого вселенца будут значительно варьировать в разных районах и у разных поколений в зависимости от изменяющихся абиотических и биотических факторов, не всегда благоприятствующих его воспроизводству и нормальному развитию.

Литература

- 1. Дирипаско О. А. Популяционная структура пиленгаса *Liza haematocheila* (Mugiliformes, Mugilidae), акклиматизированного в бассейне Азовского моря // Вопросы ихтиологии. 2007. Т. 47, № 4. С. 467-474.
- 2. **Казанский Б. Н.** Пиленгас новый объект аквакультуры // Рыбное хоз-во. 1989. № 7. С. 67-70.
- 3. **Казанский Б. Н., Старушенко Л. И.** Акклиматизация пиленгаса в бассейне Черного моря // Биология моря. -1980. -№ 6. -ℂ. 46-50.
- 4. **Любомудров А. К.** Распределение и миграции пиленгаса (*Mugil soiuy* Basilewsky) в Керченском проливе // Тр. ЮгНИРО, 1994. Т. 40. С 56-57.
- 5. **Мизюркина А. В., Марковцев В. Г.** Рост пиленгаса *Mugil soiuy* Basilewsky (Mugilidae) в Амурском заливе // Вопросы ихтиологии. 1981. Т. 21, вып. 4. С. 745-748.
- 6. **Рылов В. Г., Шерман И. М., Пилипенко Ю. В.** Пиленгас в континентальных рыбохозяйственных водоемах. Симферополь: Таврия, 1998. 101 с.
- 7. **Царин В. Г., Зуев Г. В., Болтачев А. Р.** Рост пиленгаса *Mugil soyui* Basilewsky, 1855 (Mugilidae, Pisces) (Обзор) // Экология моря. 1999. Вып. 48. С. 68-72.
- 8. **Bertalanffy L.** A quantitative theory of organic growth // Humam Biology. -1938. V. 10, No 2. P. 181-213.