МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

Государственное научное учреждение Всероссийский научно-исследовательский институт ирригационного рыбоводства

Развитие аквакультуры в регионах: проблемы и возможности

Доклады Международной научно-практической конференции 10-11 ноября 2011 г., г. Москва

УДК 639.3

ББК 47.2

Оргкомитет конференции: Серветник Г.Е., Шульгина Н.К., Новоженин Н.П., Шишанова Е.И. Львов Ю.Б.

Развитие аквакультуры в регионах: проблемы и возможности. Международная научно-практическая конференция, 10-11 ноября 2011 г.: доклады / ГНУ ВНИИР Россельхозакадемии. — М.: Изд-во РГАУ-МСХА им. К.А. Тимирязева, 2011. **234 с.**

Все статьи приведены в авторской редакции

© ГНУ ВНИИР Россельхозакадемии, 2011

- 7. Петрушин А.Б., Лабенец А.В. Перспективный метод сравнительной оценки карпа, Рациональное использование пресноводных экосистем перспективное направление реализации национального проекта «Развитие АПК». -М.: 2007. -С. 142-158
- 8. Правдин И.Ф. Руководство по изучению рыб. Сельколхозгид, 1931.- 137 с.
- 9. Подушка. С.Б. Загадка окской стерляди. Рыбоводство и рыболовство. №1. 1995. С.13-14

УДК 639.3

ИЗМЕНЕНИЕ РОСТА ПРИ СЕЛЕКЦИИ СОМА ОБЫКНОВЕННОГО В ПРУДОВЫХ УСЛОВИЯХ

Петрушин А.Б.

ГНУ Всероссийский НИИ ирригационного рыбоводства Россельхозакадемии, пос. Воровского Моск. обл., Россия, e-mail: gidrobiont4@yandex.ru

THE CHANGES OF GROWTH BY CATFISH SELECTION IN RESERVOIRS CONDITIONS

Petrushin A.B. Summary

Studying of escalating of weight of catfishes of two unrelated populations at various feeding is spent. It is shown that at a lack of a food of a female lag behind in growth males. Necessity of additional feeding of manufacturers for acceleration domestication and breed formation is proved.

Key words: European catfish (Silurus glanis L.), rate of increase, a feeding level.

Выращивание сома обыкновенного во всем мире признано перспективным направлением аквакультуры, тем более, что эта рыба в ряде регионов относится к краснокнижным объектам. Сом имеет ряд особенностей, позволяющих выращивать его совместно с карпом. Он обладает быстрым темпом роста, его мясо имеет высокие вкусовые качества.

При выращивании сома обыкновенного в условиях карповых рыбоводных хозяйств существует необходимость вписать технологию его воспроизводства и выращивания в действующую схему работы по выращиванию основных видов – карпа и р/я.

В двух рыбоводных хозяйствах второй и пятой зон рыбоводства — «Киря» Порецкого района Чувашской республики (2 зона рыбоводства) и рыбоводном хозяйстве «Флора» Волгоградской области (5 зона рыбоводства) была проведена рыбоводно - биологическая оценка селекционируемых групп сомов двух неродственных популяций. Изучался целый ряд физиолого—биохимических и иммунологических показателей, на основе использования

опубликованной авторской методики оценки селекционируемых групп обыкновенного сома.

Оценка роста и развития молодых производителей сома обыкновенного четвёртого селекционного поколения проводилась с целью определения реакции на выращивание в прудовых условиях в пятой зоне рыбоводства.

Сравнительная оценка наращивания массы тела в зависимости от условий питания сома, проведённая в последние годы, показала, что при обильном и доступном корме одновозрастные самки сома обыкновенного опережают самцов (табл. 1).

 Таблица 1. Показатели массы тела у производителей сома обыкновенного при разных условиях питания

Рыбоводные хозяйства Масса тела, кг Самки Самцы «Флора», обильное кормление F 2 3.5 ± 0.92 $3,34 \pm 0,12$ $4,42 \pm 0,19$ F 4 $5,16\pm0,61$ 2.5 ± 0.14 3.6 ± 0.25 «Киря», естественная добыча «Ергенинский», достаточное питание $4,15\pm0,05$ $3,6 \pm 0,25$

В таблице даны показатели массы тела у самцов и самок при разных условиях питания. В предыдущих отчетах были описаны условия дополнительного кормления в p/x «Флора». Подготовленные корма задавались сомам непосредственно к укрытиям, что позволило снизить энергетические затраты на поиск пищи в разы.

В р/х «Киря» сомы добывали пищу самостоятельно в условиях прудов, куда подсаживались мелкие карпы или караси (возможно в недостаточном количестве и не оптимального для поимки размера).

Таким образом, при отсутствии комфортных условий, когда сомы добывают пищу естественным путем, самки отстают в росте, что согласуется с данными Г.В.Никольского, описывающего сомов, живущих в естественных ареалах Аральского моря (длина тела у самок 98,2 см, у самцов – 107,2 см).

Бонитировка производителей сома этого года подтверждает превышение массы тела одновозрастных самок над самцами.

Изучение роста и развития сомов в условиях р/х «Флора» в сезон 2011 года дало убедительные доказательства о влиянии доступного и обильного питания на прирост массы и в целом, на развитие экстерьера (табл.2,3).

Так, масса тела самок превышает таковую у самцов на 16, 7% в основном за счёт наращивания мышечной массы и, очевидно, увеличения генеративной ткани. Одновременно с этим не отмечено значительного роста в длину, почти не изменилась длина головы, в том числе индекс и длина усов.

Таблица 2. Масса тела и экстерьер производителей обыкновенного сома 4 -го селекционного поколения. ООО «Флора», Волгоградской обл. Весна 2011 г.

Признаки	Самки		Самцы	
	$M \pm m$	Cv, %	$M \pm m$	Cv, %
Масса тела, кг	5,16±0,61	26,4	$4,42\pm0,19$	9,4
Длина тела, см	78,8±2,9	8,4	$77,1\pm1,17$	3,4
Обхват тела, см	45,2±1,74	8,6	41,2±0,68	3,7
Индекс обхвата тела, %	57,4±0,79	3,1	53,4±0,61	2,6
Длина головы, см	15,8±0,41	5,9	$15,1\pm0,24$	3,6
Индекс длины головы, %	20,1±0,51	5,6	19,6±0,37	4,2
Индекс физического развития,	$64,7\pm5,38$	18,6	57,3±1,70	6,6
г/см				
Коэффициент упитанности	$1,03\pm0,03$	6,5	$0,96\pm0,02$	5,1
Длина уса, см	$16,6\pm0,97$	13,2	$16,3\pm0,20$	2,7

Таблица 3. Изменение показателей массы и экстерьера за годовой цикл (2010-2011 г.г.)

Показатели	Самки		самцы		
	прирост	% o.c.p*	прирост	%	
				o.c.p*	
Масса тела, кг	1,64	46,5	1,08	32,3	
Длина тела, см	4,2	5,6	нет	Нет	
Длина головы, см	0,5	3,3	нет	Нет	
Индекс головы, %	тенденция к уменьшению				
Обхват тела, см	8,3	22,5	6,8	19,8	
Индекс обхвата, %	9,3	19,3	8,8	19,7	
Индекс физического развития,	18,4	39,7	12,0	26,5	
г/см					

Примечание: * % о.с.р. – относительная скорость роста

При определении относительной скорости роста отмечен ряд закономерных изменений, указанных выше. Так, скорость роста массы тела у самок составляла 46,5%, у самцов -32,3%. Рост в длину у самцов отсутствует, в то время как у самок он составлял 5,6%.

Наибольшие приросты наблюдались по общему физическому развитию (39,7% у самок и 26,5% у самцов).

Второе место в этом ряду занимает обхват тела (19,3% у самок и 19,7% у самцов).

Следовательно:

1. У созревающих производителей сомов основное место в развитии занимает наращивание мышечной массы и развитие генеративной ткани, тому доказательство — обхват тела, поскольку корреляция этого признака с плодовитостью, как правило, очень высокая.

2. При формировании маточного поголовья сомов в прудовых условиях необходимо включать дополнительное кормление, которое может, наряду с другими факторами, обеспечить ускорение процесса доместикации, а при направленной селекции породообразование.

УДК 639.3

РОЛЬ СВЕТА В ЖИЗНИ СОМА ОБЫКНОВЕННОГО (Silurus glanis L) Петрушин А.Б., Маслова Н.И.

ГНУ Всероссийский научно-исследовательский институт ирригационного рыбоводства Россельхозакадемии

THE ORDINARY OF LIGHT IN THE LIFE CATFISH (SILURUS GLANIS L)

Petrushin A. B., Maslova N. I. Summary

This article show the effect on growth, metabolic and development of catfish (Silurus glanus L.) in the different conditions aquaculture – it is of temperature and light. By some conditions of fishes food but different shelter was obtain body weight of two-years catfishes 800g, without shelter – 227.9g.

Key words: catfish, metabolic, photoperiodism, physiological state, growth.

Способность реагировать на свет является всеобщим свойством живого. Как фактор свет воздействует на процессы роста рыб, изменяясь в своем качестве (разная длина волн), количестве (различная интенсивность) и в периодичности. Фотопериодизм генетически обусловлен и связан с биологическим ритмами. У животных он контролирует наступление и прекращение брачного периода, переход к зимнему сезону. Физико-химический механизм этих процессов одинаков у всех животных.

Фотопериодизм — одно из основных фотобиологических явлений, в котором свет выступает как источник информации.

Фотоиндуцирование перестройки в зрительном пигменте инициирует ферментативные и ионные процессы в зрительной клетке и приводит к возникновению рецепторно потенциально-электрического сигнала, который передается затем в центральный отдел зрительной системы гипофиза (Проссер Л.,Браун Ф., 1967).

Влияние глубины на рыб связано с изменением освещенности. У видов рыб, живущих в верхних слоях воды, диаметр глаза составляет 19-29% о длины головы, тогда как у рыб, живущих на глубинах до 1500 м - 1/3 часть от длины головы.

Свет действует на центральную нервную систему через орган зрения, а затем центральная нервная система оказывает влияние на функцию гипофиза, который, в свою очередь влияет на функцию половой железы. Половая