ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ РОССИЙСКАЯ АКАДЕМИЯ НАУК ЮЖНЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ АРИДНЫХ ЗОН ЮНЦ РАН ИНСТИТУТ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ И ГУМАНИТАРНЫХ ИССЛЕДОВАНИЙ ЮНЦ РАН

МАТЕРИАЛЫ НАУЧНЫХ МЕРОПРИЯТИЙ,

ПРИУРОЧЕННЫХ К 15-ЛЕТИЮ ЮЖНОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК:

международного научного форума «ДОСТИЖЕНИЯ АКАДЕМИЧЕСКОЙ НАУКИ НА ЮГЕ РОССИИ»

международной молодежной научной конференции «ОКЕАНОЛОГИЯ В XXI ВЕКЕ: СОВРЕМЕННЫЕ ФАКТЫ, МОДЕЛИ, МЕТОДЫ И СРЕДСТВА»

ПАМЯТИ ЧЛЕНА-КОРРЕСПОНДЕНТА РАН Д.Г. МАТИШОВА

всероссийской научной конференции «АКВАКУЛЬТУРА: МИРОВОЙ ОПЫТ И РОССИЙСКИЕ РАЗРАБОТКИ»

Г. РОСТОВ-НА-ДОНУ, 13-16 ДЕКАБРЯ 2017 Г.

Редколлегия:

академик Г.Г. Матишов (главный редактор), академик В.А. Бабешко, академик Ю.Ю. Балега, академик И.А. Каляев, академик В.И. Колесников, академик В.И. Лысак, академик В.И. Минкин, академик И.А. Новаков, академик Ю.С. Сидоренко, чл.-корр. РАН А.М. Никаноров, д.г.н. С.В. Бердников, д.ф.-м.н. В.В. Калинчук, д.и.н. Е.Ф. Кринко, д.б.н. Е.Н. Пономарёва, к.б.н. Н.И. Булышева, к.г.н. Е.Э. Кириллова, к.б.н. В.В. Стахеев, Р.Г. Михалюк

Материалы научных мероприятий, приуроченных к 15-летию Южного научного центра Российской академиче мии наук: Международного научного форума «Достижения академической науки на Юге России»; Международной молодежной научной конференции «Океанология в XXI веке: современные факты, модели, методы и средства» памяти члена-корреспондента РАН Д.Г. Матишова; Всероссийской научной конференции «Аквакультура: мировой опыт и российские разработки» (г. Ростов-на-Дону, 13–16 декабря 2017 г.) / [гл. ред. акад. Г.Г. Матишов]. – Ростов н/Д: Изд-во ЮНЦ РАН, 2017. – 548 с. – ISBN 978-5-4358-0165-1.

УДК 001(063)

Издание включает материалы Международного научного форума «Достижения академической науки на Юге России», Международной молодежной научной конференции «Океанология в XXI веке: современные факты, модели, методы и средства» памяти члена-корреспондента РАН Д.Г. Матишова, Всероссийской научной конференции «Аквакультура: мировой опыт и российские разработки», проходивших в период с 13 по 16 декабря 2017 г. и приуроченных к 15-летию Южного научного центра РАН.

Представлены результаты, полученные ведущими учеными научных организаций Юга России, молодыми учеными, студентами и аспирантами при выполнении фундаментальных и прикладных исследований в приоритетных областях науки с целью обеспечения комплексного решения технологических, инженерных, экологических, геополитических, экономических, социальных, гуманитарных проблем в интересах устойчивого развития южных регионов Российской Федерации.

Материалы научных мероприятий рассчитаны на широкий круг читателей, представляют интерес для ученых, преподавателей, аспирантов, студентов высших учебных заведений и всех, кто интересуется достижениями современной науки.

Издание опубликовано при финансовой поддержке Федерального агентства научных организаций.

Отдельные результаты опубликованы в рамках популяризации результатов исследований по проекту «Разработка технических средств, биотехнологий выращивания нетрадиционных видов рыб и беспозвоночных для прогресса аквакультуры Южного и Северо-Западного федеральных округов России» ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 гг.» (соглашение № 14.607.21.0163, уникальный идентификатор RFMEFI60716X0163).

ISBN 978-5-4358-0165-1 © ЮНЦ РАН, 2017

СОСТОЯНИЕ ЕСТЕСТВЕННОГО ВОСПРОИЗВОДСТВА САЗАНА (*Cyprinus carpio* L., 1758) КУЙБЫШЕВСКОГО ВОДОХРАНИЛИЩА И РОЛЬ ИСКУССТВЕННОГО ВОСПРОИЗВОДСТВА В СОХРАНЕНИИ И УВЕЛИЧЕНИИ ЕГО ЗАПАСОВ В ВОДОЕМЕ

Ф.М. Шакирова, Ю.А. Северов

Государственный научно-исследовательский институт озерного и речного рыбного хозяйства им. Л.С. Берга, Татарское отделение, г. Kaзaнь shakirovafm@qmail.com

Куйбышевское водохранилище, созданное в результате строительства Жигулевской гидроэлектростанции, расположено в центре Волжско-Камского каскада и регулирует более 90 % водных ресурсов р. Волги. Зарегулирование стока реки привело к превращению речной экосистемы в озерную, с совершенно другими гидрологическими, гидрохимическими и гидробиологическими характеристиками, которые, в свою очередь, создали иные условия для жизни гидробионтов и определили их состав, структуру, уровень воспроизводства, численность и распределение по акватории водоема.

До зарегулирования Волги на участке современного Куйбышевского водохранилища встречался 51 вид рыб. За почти 60-летний период существования водохранилища в составе ихтиофауны выявлены значительные изменения, произошедшие в результате сокращения числа проходных и реофильных видов и перехода их в группу редких или исчезающих, появления целенаправленных вселенцев (белый и пестрый толстолобики, белый амур, пелядь) и видов, случайно завезенных в период акклиматизационных и рыбоводных работ, проводимых на водоеме, а также за счет проникновения и расселения чужеродных видов как с севера, так и с юга, продолжающегося и сегодня [Шакирова, Северов, 2014].

Таким образом, в настоящее время в Куйбышевском водохранилище встречаются 59 видов рыб, относящихся к 13 отрядам, 19 семействам и 47 родам [Шакирова, Северов, 2014; Шакирова и др., 2015]. Из них промысловые виды составляют более половины — 50,8 % (30 видов), вселенцы — 30,5 % (18), редкие виды, включенные в Красную книгу Республики Татарстан — 18,6 % (11 видов) [Красная книга ... 2016].

Стихийное формирование ихтиофауны Куйбышевского водохранилища в период его становления и неблагоприятные условия для размножения рыб препятствовали созданию в водоеме значительных промысловых запасов ценных видов, тогда как второстепенные и малоценные рыбы, обладая высокой экологической пластичностью, резко увеличили свою численность. Этому способствовало также отсутствие масштабных работ по реконструкции рыбного населения водохранилища путем увеличения численности хозяйственно значимых высокоценных видов [Цыплаков, 1980]. В начальный период становления водохранилища для обеспечения формирования в создаваемом водоеме промысловых стад рыб был осуществлен ряд рыбоохранных мероприятий, акклиматизационных и рыбоводных работ, включавших запрет на промысел осетровых, леща, сазана и судака, но разрешавших отлов малоценных рыб и щуки. Тогда же для увеличения численности сазана в зону затопления выпустили 1 млн его сеголеток, выращенных в пойменных водоемах и прудах, и 33 тыс. его производителей, выловленных в низовьях Волги. Кроме того, с нижнего бьефа в водохранилище пересадили около 1000 экз. русского осетра *А. gueldenstaedtii* [Лукин, 1961].

Несмотря на весьма благоприятные условия для обитания сазана в Средней Волге, рос он здесь хорошо, однако численность его всегда была невысокой. Основные места его обитания приурочены к прилежащим большим заливам, в частности, Мёшинскому, Черемшанскому, Свияжскому и устьям мелководий, а нерест совпадал с периодом быстрого спада полых вод, в результате чего икра и молодь оставались в отшнуровавшихся от реки водоемах поймы и погибали. С созданием водохранилища эта ситуация сохранилась.

Анализ динамики промысловых уловов сазана в Куйбышевском водохранилище в течение 70–80-х годов прошлого столетия выявил ее неустойчивость, что объясняется нестабильностью условий его естественного воспроизводства. Отсюда одной из мер для поддержания численности рыб в водохранилище явился выпуск в водоем жизнестойкой молоди, увеличивающий численность популяции и вылов (табл. 1).

Таблица 1 ВЫЛОВ И ВЫПУСК САЗАНА В КУЙБЫШЕВСКОМ ВОДОХРАНИЛИЩЕ с 1970 по 2016 г.

Годы	Вылов, т	Выпуск, тыс. шт.	% соотношение от всего вылова					
1970	5,0	-	0,1					
1971	5,0	-	0,1					
1972	1,0	-	0,02					
1973	5,0	-	0,1					
1974	17,0	-	0,4					
1975	12,0	-	0,3					
1976	8,0	-	0,2					
1977	10,0	-	0,2					
1978	10,0	-	0,2					
1979	30,0	-	0,6					
1980	14,0	-	0,3					
1981	20,0	_	0,4					
1982	9,8	_	0,2					
1983	70,1	14,3	1,7					
1984	96,4	1682,0	2,1					
1985	80,2	-	1,4					
1986	120,4	42,2	2,2					
1987	245,5	304,5	4,6					
1988	183,1	1510,0	3,1					
1989	55,0	6424,7	0,9					
1990	82,7	667,0	1,5					
1990	84,1	-	1,6					
1991	220,8	4000,0	5,1					
1992	68,3		2,1					
1993	54,0	-	2,1					
1994	+	_						
1995	35,4	-	1,1					
	21,1	-	0,7					
1997	20,0	-	0,8					
1998	24,5	-	0,9					
1999	27,2	-	0,9					
2000	89,3	_	3,1					
2001	48,3	-	1,8					
2002	31,9	357,565	1,2					
2003	36,4	1390,685	1,8					
2004	20,6	757,472	1,1					
2005	20,3	1151,858	0,9					
2006	20,3	2488,008	0,8					
2007	26,0	1835,2	0,9					
2008	28,1	-	0,9					
2009	22,7	101,0	0,8					
2010	49,1	48,7	1,6					
2011	54,9	386,0	1,7					
2012	61,2	100,0	1,8					
2013	47,2	742,0	1,4					
2014	51,5	350,9	1,2					
2015	53,9	194,7	1,6					
2016	63,3	_	1,6					

Таким образом, изменить существующее положение ценных в промысловом отношении аборигенных видов, в том числе сазана, и увеличить его численность в водохранилище возможно за счет искусственного воспроизводства, путем широкомасштабного зарыбления в оптимальных объемах и в наиболее удобных местах для его выживания и нагула. Сегодня актуальной является необходимость доведения объемов зарыбления сазаном Куйбышевского водохранилища до научно обоснованных норм. По данным многолетних исследований, с учетом свободной пищевой ниши Куйбышевского водохранилища Татарским отделением подготовлены рекомендации по искусственному воспроизводству водных биоресурсов Волжско-Каспийского рыбохозяйственного бассейна на 2018−2020 гг., включая сазана (по 0,4 млн шт. ежегодно). При подготовке рекомендаций учитывалась средняя штучная навеска вселяемой молоди ВБР, которая должна соответствовать приказу Минсельхоза России от 30 января 2015 г. № 25. Однако в настоящее время бюджетных средств на зарыбление не выделяется, выпуски проводятся не регулярно, зачастую не в оптимальных объемах и за счет средств по возмещению вреда, наносимого водным биоресурсам субъектами хозяйственной деятельности при проведении ими работ в акватории водных объектов рыбохозяйственного назначения. Анализ показывает, что объемы зарыбления в счет возмещения вреда водным биоресурсам недостаточны для ощутимого увеличения численности и запасов промысловых видов рыб и нужна целевая государственная программа с финансированием.

Полученные за последние годы наблюдений материалы показывают, что динамика уровенного режима водохранилища, наблюдаемая в течение нерестового и нагульного периодов 2011–2015 гг., является благоприятной как для размножения, так и для нагула молоди сазана и играет важную роль в формировании численности его поколений. Ежегодная (с 2011 г.) встречаемость в контрольных уловах молоди сазана подтверждает, что уровенный и температурный режимы водоема в период его нереста благоприятны для эффективного размножения (табл. 2).

Таблица 2 ВИДОВОЙ СОСТАВ СЕГОЛЕТКОВ В УЛОВАХ В ОСЕННИЙ ПЕРИОД 2011–2015 гг., %

D		C						
Вид	2011	2012	2013	2014	2015	Среднее		
Тюлька	1,12 1,41		-	18,12	85,64	26,52		
Лещ	26,21	82,45	44,80	31,14	3,26	37,52		
Уклейка	7,40	7,33	0,21	13,67	4,80	6,68		
Судак		_	0,26	1,48	0,05	0,60		
Густера		2,03	22,89	10,54	1,87	9,30		
Берш	0,30	0,58	0,41	1,65	_	0,69		
Синец	0,12	2,03	0,05	0,16	_	0,55		
Ерш		_	0,31	_	_	0,31		
Серебряный карась	46,77	0,32	6,84	0,16	0,43	10,89		
Окунь	1,56	0,65	1,23	0,49	0,39	0,84		
Игла-рыба	3,31	0,85	_	_	_	2,10		
Жерех	3,30	0,67	2,31	2,64	0,48	1,87		
Язь		_	1,49	7,58	2,31	3,79		
Сазан	1,30	0,38	0,77	_	_	0,76		
Плотва	8,20	0,65	16,87	10,87	0,50	7,39		
Пескарь	0,21	_	-	_	_	0,20		
Бычок-кругляк	0,20	0,65	_	_	_	0,35		
Елец	-	_	-	-	0,14	0,14		
Голавль	-	_	-	-	0,02	0,02		
Красноперка	-	_	-	0,16	-	0,16		
Чехонь	_	_	_	_	0,02	0,02		

Примечание: жирным шрифтом выделены доминанты.

В сочетании с искусственным воспроизводством (выпуск молоди средней штучной навеской не менее 120 г) в водохранилище наблюдается увеличение его численности и запасов [Северов, Шакирова, 2016], подтверждаемое промысловыми и контрольными уловами, что в дальнейшем приведет к повышению численности его промыслового стада до оптимального уровня (табл. 3).

УЛОВЫ ВСЕЙ РЫБЫ И САЗАНА В КУЙБЫШЕВСКОМ ВОДОХРАНИЛИЩЕ И В ВОДАХ РЕСПУБЛИКИ ТАТАРСТАН

Показатели	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Вылов сазана по всему вдхр., т	89,3	48,3	31,9	36,4	20,6	20,3	20,3	26,0	28,1	22,7	49,1	54,9	61,2	47,2	51,5	53,9	63,3
Вылов сазана в РТ, т	21,9	16,7	8,3	15,7	15,1	15,7	13,6	19,8	21,3	18,1	19,9	13,7	17,6	12,0	14,8	9,5	14,7
% вылова сазана в РТ от вылова по всему вдхр.	24,5	34,6	26,0	43,1	73,3	77,3	67,0	71,2	75,8	79,7	40,5	25,0	28,8	25,4	28,7	17,6	23,2
Вылов всей рыбы в Куйбы- шевском вдхр., т	2853,6	2673,3	2695,4	2044,1	1949,4	2114,2	2568,2	2862,9	3140,2	2891,9	3093,5	3215,5	3362,4	3412,7	4196,8	3380,5	3912,2

При этом основная часть сазана в Куйбышевском водохранилище в последние годы вылавливается на акватории Республики Татарстан (табл. 3). Для рационального ведения его промысла в водохранилище устанавливается общий допустимый улов (ОДУ), учитывается промысловая мера (40 см) и доля немерных особей в уловах (не более 40 %).

СПИСОК ЛИТЕРАТУРЫ

Красная книга Республики Татарстан. Животные, растения, грибы. Изд. 3. Казань: Идель-Пресс, 2016. 760 с. Лукин А.В. Куйбышевское водохранилище // Изв. ГосНИОРХ. 1961. Т. 50. С. 62–76.

Северов Ю.А., Шакирова Ф.М. Состояние естественного воспроизводства основных промысловых видов рыб в Мёшинском заливе Куйбышевского водохранилища в 2010–2015 гг. // Материалы Всеросс. конф. с междунар. участием, посвящ. 85-летию Тат. отд. (24–29 октября 2016 г). Казань, 2016. С. 941–950.

Цыплаков Э.П. Рыбопродукционные возможности Куйбышевского водохранилища // Биол. внутр. вод. Инф. бюлл. 1980. № 47. С. 46–49.

Шакирова Ф.М., Северов Ю.А. Видовой состав ихтиофауны Куйбышевского водохранилища // Вопросы ихтиологии. 2014. Т. 54. №5. С. 520–532.

Шакирова Ф.М., Северов Ю.А., Латыпова В.З. Современный состав чужеродных видов рыб Куйбышевского водохранилища и возможности проникновения новых представителей в экосистему водоема // Российский журнал биологических инвазий. 2015. № 3. С. 77–97.