МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФГБОУ ВО «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМ. Н.И. ВАВИЛОВА»

ФГБОУ ВО «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

НАЦИОНАЛЬНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

СОСТОЯНИЕ И ПУТИ РАЗВИТИЯ АКВАКУЛЬТУРЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ В СВЕТЕ ИМПОРТОЗАМЕЩЕНИЯ И ОБЕСПЕЧЕНИЯ ПРОДОВОЛЬСТВЕННОЙ БЕЗОПАСНОСТИ СТРАНЫ УДК 639.3:639.5 ББК 47.2 ISBN 978-5-9758-1645-0

Редакционная коллегия:

Васильев А.А., Кузнецов М.Ю., Поддубная И.В., Сивохина Л.А.

НАЦИОНАЛЬНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

Состояние и пути развития аквакультуры в Российской Федерации в свете импортозамещения и обеспечения продовольственной безопасности страны: материалы национальной научно-практической конференции, Саратов, 4-5 октября 2016 г. / Под ред. А.В. Молчанова, — Саратов: изд. «Научная книга», 2016. — 152 с.

В сборнике материалов национальной научно-практической конференции приводятся сведения по ресурсосберегающим экологически безопасным технологиям производства и переработки рыбохозяйственной продукции. Для научных и практических работников, аспирантов и студентов аграрных специальностей.

Статьи даны в авторской редакции в соответствии с представленным оригинал-макетом.

ISBN 978-5-9758-1645-0

[©] ФГБОУ ВО «Саратовский ГАУ», 2016

[©] Коллектив авторов, 2016.

9. Brummett R.E., Lazard J., Moehl J., Aquaculture: realizing the potential / Brummett R.E., Lazard J., Moehl J. / Food Policy, 2008. –P. 371–385.

УДК: 639.3.09

ОПЫТ ПРИМЕНЕНИЯ ПРОБИОТИКА ВЕТОМ 1.1 ДЛЯ ПОВЫШЕНИЯ ВЫЖИВАЕМОСТИ КАРПОВЫХ РЫБ В УСЛОВИЯХ СОДЕРЖАНИЯ В АКВАРИУМАХ

В.В. КОВАЛЕВ, С.В. КОРОЛЬКОВА, И.И. ЛОБОДА, Н.А. ЕГОРКИНА

V.V. Kovalev, S.V.Korolkova, I.I.Loboda, N.A.Egorkina Российский государственный гидрометеорологический университет, Russian State Hydrometeorological University

Аннотация. В представленной работе было исследовано применение БАД пробиотика Ветом 1.1 для карповых рыб в аквариумах для повышения их выживаемости, особенно в условиях их поражения паразитарными инвазиями и их лечения антипротозойными и антигельминтными средствами.

Ключевые слова: пробиотик Ветом 1.1, Bacillus subtilis, антипротозойные и антигельминтные лекарственные средства.

Abstract. Probiotic Vetom 1.1 was used for carp fish in aquarium keeping for help their survival especially in the condition of parasitic invasion and their treatment with antiprotozoal and antihelmintic remedies.

Keywords: Probiotic Vetom 1.1, Bacillus subtilis, antiprotozoal and antihelmintic remedies.

Пробиотики — это биологически активные добавки или лекарственные средства, содержащие в своем составе живые микроорганизмы нормальной микрофлоры кишечника или микроорганизмы, которые способствуют ее формированию. Регулируя микробоценоз пищеварительного тракта, пробиотики помогают в усвоении питательных веществ, способствуют послестрессовой адаптации, повышают резистентность макроогранизма к патогенным микроорганизмам, и в целом, улучшают работу пищеварительной системы за счет дополнительной продукции ферментов в пищеварительном тракте.

Применение пробиотиков в животноводстве помогает уменьшать кормозатраты, что делает корма более эффективными, а применение пробиотиков выгодным.

Перспективным направлением является использование в рыбоводстве готовых кормов с включением спорообразующих пробиотических культур, а

также пробиотиков на основе спорообразующих бактерий, при этом некоторые пробиотические штаммы могут существенно улучшать эпизоотическую и экологическую обстановку водоемов, повышая конкурентоспособность хозяйств, в том числе, за счет получения экологически чистой продукции.

Штаммы рода *Bacillus* в стадии споры устойчивы к высокотемпературным воздействиям и могут перенести процессы экструдирования, гранулирования и др. Покоящаяся споровая стадия позволяет данным пробиотикам иметь более длительные сроки хранения, без опасности потери свойств. В коммерческих препаратах используют, в основном, штаммы, относящиеся к видам Bacillus subtilis и Bacillus licheniformis. Свойствами этих видов являются стабилизация естественной микрофлоры организма, ингибирование роста болезнетворных бактерий, способность к продуцированию аминокислот и витаминов [1].

На сегодняшний день существует довольно много схожих между собой по составу препаратов, содержащих сенную палочку. Это касается и пробиотиков, многие из которых включают в себя родственные в систематическом отношении микроорганизмы. Так, в состав БАД «Моноспорин», «Субтилис» и «Ветом 1.1.» входит сенная палочка, различаются лишь их штаммы, однако принцип действия и эффективность от этого не меняется [1, 2].

Различные исследования ДЛЯ выяснения протекторных пробиотиков в условиях аквакультуры проводятся в течение многих лет. Одним из таких стало исследование «Субтилис» в рыбоводстве для обработки икры, эмбрионов и личинок рыб на примере карася (Carassius carassius) (отряд карпообразные (Cepriniformes, семейство карповые Cyprinidae) [2]. обработки личинок использовались опытные образцы препаративных форм препарата «Субтилис» (Патенты РФ 2184774 и 2203947, используемые штаммы депонированы во Всероссийской коллекции микроорганизмов под номерами ВКМ В-2250 и ВКМ В-2252 Д соответственно). Использовалась живая спорообразующая смесь культур бацилл Bacillus subtilis и Bacillus licheniformis, приготовленная в форме суспензии живой биомассы [2].

В наших исследованиях была использована биологически активная добавка (БАД) Ветом 1.1, в состав которой входит кукурузный экстракт, картофельный крахмал, сахароза, сухая культура пробиотических микроорганизмов Bacillus Subtilis рекомбинантный штамм ВКПМ В-10641 (DSM 24613), $1*10^9$ КОЕ/г – 500 мг. Производитель - НПФ «Исследовательский центр» [3].

Препараты серии Ветом первоначально разработаны для теплокровных животных, на которых и доказана их эффективность. У млекопитающих данный вид бацилл размножается, в основном, в толстом отделе кишечника, за счет чего выделяются различные ферменты, интерферон, бацитрацины, которые, в свою очередь, подавляют рост и развитие патогенной и условнопатогенной микрофлоры. Препарат способствует очищению стенок кишечника, выведению токсинов из организма, вследствие чего происходит полное восстановление эволюционно сложившейся микрофлоры кишечника, нормализуется метаболизм и пищеварение [3]. Оказывает ли Ветом 1.1

благотворное воздействие на рыб, предстояло выяснить в настоящем исследовании.

В настоящей работе мы исследовали препарат Ветом 1.1 на карповых рыбах. Объектом исследования послужил карась обыкновенный (*Carassius carassius*).

Особенностью Ветома 1.1. является его иммуномодулирующее действие за счет синтеза интерферона и его практически повсеместная доступность за счет налаженной системы дистрибуции. Эти обстоятельства и определили актуальность данного исследования. Исследовалась возможность улучшить выживаемость рыб на фоне применения антипротозойных и антигельминтных лекарственных препаратов для их лечения, многие из которых являются весьма токсичными.

В целях выяснения протекторных свойств пробиотической добавки Ветом 1.1. в стрессовых условиях были применены следующие препараты:

- 1. «Gyrodol Plus 250», компании JBL, который используется при лечении как пресноводных, так и морских рыб от моногеней (*Dactylogyrus и Gyrodactylus*) и ленточных червей (*Cestodae*) содержит активное вещество празиквантел,
- 2. Препарат Оодинол для лечения от паразитов динофлагеллятов (оодиний)- содержит сульфата меди пентагидрат, токсичный для рыб,
- 3. Формалин препарат для борьбы с некоторыми эктопаразитами рыб, в том числе, с моногенеями.

Исследуемые объекты для всех трех препаратов помещались в две группы аквариумов, составляя экспериментальную группу аквариумов, в которые вносились с кормом навески БАД Ветом 1.1, и контрольную группу аквариумов, в которых рыбы получали обычный корм.

Исследования проводились в течение 10 дней, экспериментальная группа получала корм, замоченный в течение 10 мин в живой культуре пробиотика (выращивалась в течение суток заблаговременно, наличие живых бактерий Bacillus subtilis доказывалось при микроскопическом наблюдении). Лекарственные препараты добавлялись в обе группы аквариумов каждый день по схеме их применения.

Исследовались внешний ВИД рыб, ИΧ поведение, проводились гидрохимические исследования по определению концентраций аквариума NH₃/NH₄, NO₂, NO₃, GH, KH, pH. Суммарное содержание в воде аммиака и аммония является важнейшим рыбоводным показателем. Аммиак (NH₃) обладает острой токсичностью для рыб. Ионизированная форма аммиака - аммоний (NH₄⁺) наносит вред при хроническом воздействии. Его токсичность особенно выражена при низких значениях GH и KH. Суммарное содержание аммиака и аммония (NH₃/NH₄) в системах УЗВ является важнейшим фактором, ограничивающем плотность посадки рыб, и, следовательно, экономическую эффективность.

После окончания эксперимента проводилось ихтиопатологическое вскрытие рыб экспериментальных и контрольных аквариумов.

Наиболее выраженное токсическое действие наблюдалось для контрольной группы в случае применения Оодинола, где наблюдались угнетенное поведение рыб, отказ рыб от приема корма, была отмечена гибель нескольких рыб. При этом в экспериментальном аквариуме рыбы чувствовали себя гораздо лучше, были активными, от корма не отказывались, не было зафиксировано случаев гибели рыб.

В случае применения препарата «Gyrodol Plus 250» не было зафиксировано сильных отклонений в поведении рыб в контрольном аквариуме, возможно, потому что токсическое действие празиквантела не так явно выражено, как у сульфата меди. Но при совместном применении с формалином отмечалось изменение поведения рыб в контрольном аквариуме, при этом у рыб, получавших с кормом живую культуру Ветом 1.1, поведение и пищевая активность не отличались от нормы.

Во всех случаях применения лекарственных препаратов в контрольных аквариумах было отмечено возрастание показателя NH_3/NH_4 и рост содержания нитритов в воде. Так, при использовании Оодинола концентрация NH₃/NH₄ к концу четвертых суток эксперимента в контрольном аквариуме составляла 1,5 $M\Gamma/\Lambda$, в опытном – только 0,3 $M\Gamma/\Lambda$, а на десятые сутки в контрольном аквариуме она выросла до 2 мг/л, в то время как в экспериментальном – только до 0.5 мг/л. Рост концентрации нитрит-ионов в контрольном аквариуме начался на седьмые сутки эксперимента: 0,4 мг/л против 0,2 мг/л в опытном. К концу эксперимента (на десятые сутки) концентрация нитритов в воде контрольного аквариума составила уже 1,6 мг/л, а в опытном она не изменилась. Сходная, но несколько менее контрастная картина наблюдалась в опытах с другими препаратами. Эти данные свидетельствуют о том, что использованные нами лекарственные препараты, особенно ионы меди, оказывают стрессирующее воздействие на рыб. Часть рыб (25%) в контрольном аквариуме с Оодинолом уже умерло, а оставшиеся выделяют в воду значительное количество аммиака, что можно связать с интенсивными процессами распада белковых молекул в тканях рыбы. другой стороны, эти данные говорят о значительном нитрифицирующих бактерий, окисляющих аммиак/аммоний и нитрит-ионы, для которых ионы меди представляют опасность.

Лучшие гидрохимические показатели в экспериментальном аквариуме могут быть обусловлены отсутствием стрессовой реакции у рыб, которая в полной мере была выражена в контроле. Антистрессовое действие пробиотической добавки увеличивает резистентность макроогранизма к токсическому действию формалина, празиквантела и ионов меди, улучшает работу пищеварительной системы за счет дополнительной продукции ферментов в пищеварительном тракте.

По окончании исследований было проведено ихтиопатологическое вскрытие, был взят образец эпителия с жабр. Результаты исследования показали, что состояние жабр значительно лучше у рыб из аквариума с добавлением пробиотика Ветом 1.1, в контрольном аквариуме у рыб наблюдалась сильная анемия жаберных лепестков.

Проведенное исследование позволяет сделать следующие выводы: при использовании добавки в корм пробиотика Ветом 1.1. улучшается пищеварение рыб и усвояемость корма; улучшаются гидрохимические показатели воды в рыбоводной емкости; возрастает резистентность рыб К повышенным концентрациям лекарственных препаратов, различных по своему химическому составу. Состояние слизистых покровов, эпителия жабр, общая подвижность и аппетит рыб оказались заметно лучшими в опытной группе. Это протекторное действие в отношении карповых рыб препарата Ветом 1.1 позволяет проводить более быстрое и эффективное лечение и добиваться успеха в сложных случаях, когда приходится бороться с патогенными организмами, выработавшими устойчивость к лекарственным препаратам, применяемым в стандартных концентрациях. Кроме того, использование пробиотика Ветом 1.1. позволяет успешно комбинировать лекарственные препараты, сочетать которые при лечении обычно не рекомендуется из-за повышения их токсичности для рыб при совместном использовании.

Это исследование следует продолжить для того, чтобы накопить данные для статистической обработки. Однако, уже в настоящее время, в соответствии с результатами, полученными в ходе данной работы, пробиотик «Ветом 1.1.» широко используется в ООО «Акваинтерио» г.Санкт-Петербург, где накоплен большой положительный опыт использования его в качестве протектора, защищающего рыб от токсического действия лекарственных препаратов, используемых в относительно высоких дозировках для борьбы со сложными инфекциями и инвазиями.

Список литературы.

- 1. Егоров А.О., Пашков А.Н. Опыт использования пониженных концентраций пробиотического препарата «Моноспорин» при подращивании молоди африканского клариевого сома (Clarias Gariepinus) в УЗВ//Рыбоводство и рыбное хозяйство. № 1, 2016. С.25-33.
- 2. Скляров В.Я., Микряков В.Р., Кулаков Г.В., Кудряшова Е.Б., Вайнштейн М.Б. Перспективы применения препарата пробиотик «Субтилис» в рыбоводстве для обработки икры, эмбрионов и личинок рыб на примере карася *Carassius carassius* и карпа *Cyprinus carpio*» // Вопросы рыболовства. Том 5, № 3(19), 2004.
- 3. Описание БАД пробиотика Ветом 1.1. НПФ «Исследовательский центр». Официальный сайт http://vetom.ru