К ВОПРОСУ О ПРИЧИНАХ МАССОВОЙ ЭЛИМИНАЦИИ В ПОПУЛЯЦИЯХ ЧЕРНОМОРСКОЙ МИДИИ (Mytilus galloprovincialis Lam) ПРИ ИХ ВЫРАЩИВАНИИ НА КОЛЛЕКТОРАХ

ЗОЛОТНИЦЫЙ А.П. – канд. биол. наук., зав. лабораторией культивирования моллюсков ЮгНИРО (г. Керчь)

Одним из наиболее важных и в то же время слабоизученных вопросов марикультуры мидий является вопрос о причинах массового опадания моллюсков при их выращивании на коллекторах [1 - 4].

МАССОВАЯ элиминация происходит в процессе культивирования различных видов мидий - Mytilus galloprovincialis, M. edulis, M. trossulus в южных [3 - 5], северных [2, 6] и дальневосточных [7] морях СНГ и других акваториях Мирового океана [1, 8], что позволяет считать ее достаточно общим явлением для марикультуры мидий. Очень часто массовую элиминацию особей с искусственных субстратов связывают с гидродинамическими нагрузками на гидробиотехнические сооружения (ГБТС), обусловленными сильными ветрами и штормами, критическими значениями температуры, солености и др. [1 - 4]. Не отрицая очевидного влияния этих факторов, следует отметить, что в настоящее время имеется ряд данных, позволяющих считать, что массовое опадание связано не только с ними, а в значительной степени обусловлено биологическими особенностями объекта культивирования. Анализ этого вопроса и являлся целью настоящей работы.

МАТЕРИАЛ по выращиванию мидий на коллекторах собирался на опытно-промысленных мидиевых плантациях, установках институтом и различными промышленными организациями в Керченском проливе, оз. Донузлав и Тендревском заливе.

Культивирование моллюсков проводили на 3-х типах гидробиотехнических сооружений (сис- темах) - ГБТС, разработанных в ЮгНИРО. Была использована линейная секционная установка (ярус) - Н7-ИН14, стержневой насос - Н7-ИН13 и коллектор- ростов мерной длины - Н7-ИКА28, технические характеристики которых подробно изложены в работе В.Г. Крючкова [9]. При выращивании моллюсков использовали 3 типа искусственных субстратов, отличавшихся между собой геометрической формой и относительной поверхностью субстрата, описанных нами ранее [10]. В качестве базовой характеристики архитектоники коллектора был использован коэффициент - \(\omega \), равный отношению площади данного типа субстрата \(S \) на 1 погонном метре (лм) коллектора к стандартной площади - \(S_0 \), равной \(1м^2 \) (в = \(S/S_0 \)). Таким образом, все типы коллекторов, с 1-го по 3-й, были ранжированы по величине этого коэффициента – 0,09, 0,21 и 0,34 соответственно.

Сбор полевого материала проводили, по возможности, регулярно (с интервалом между взятым проб 1 - 2 месяца) в течение года, за исключением зимних месяцев в период ледостава. Исследовали все имеющиеся на искусственных субстратах размерные и возрастные группы моллюсков. При обработке коллек- тротов пробы объединялись в 5- или 10 мм размерные группы. Продукцию мидий (Рт) определяли методом Бойсена-Менсена по уравнению: \(R_1 = V_{1n} - V_{1} + V_{2} \), где \(V_{1n} \), и \(V_{1} \) - биомassa моллюсков за период времени от 1 до 1+1 соответственно, \(V_{2} \) - биомасса элимированных особей в данной промежуток времени [11].

Изучение биохимического состава соматической ткани, градиентов и гепатопанкреаса моллюсков проводили на группах, состоящих из 10 экз. моллюсков. Липиды определяли путем экстрагирования из гомогенизированных навесок ткани хлороформ-этаноловой смесью (2 : 1). Содержание влаги, азота и минеральных веществ находили по стандартным методикам [11]. Полученные данные по общему азоту для расчета сырого протеина умножали на общепринятый коэффициент 6,25. Содержание зоны и орга-
Изучение скорости продукции и элиминации медий на коллекторах показало, что эти показатели в течение цикла выращивания медий (обычно 15-16 месяцев) заметно колебались и зависели как от сезона года, так и архитектоники искусственного субстрата. В связи с этим в качестве отправной точки сравнительного анализа рассмотрим динамику продукционных процессов на коллекторе 1 типа ($\omega_1 = 0,09$). Производство наиболее высоку осянью 1-го года выращивания, когда температура воды составляла 12 - 17°C, после чего она начинала снижаться (рис. 1).

Достоверный характер продукции медий. В это время не было отмечено сильных штормов и ветров, но при подъеме коллекторов наблюдалось массовое «сплазнование» моллюсков с субстрата. Кроме того, опадание медий с коллекторов зафиксировано осенью (в октябре-ноябре) 2-го года выращивания. В это время абиотические факторы также не выходили за пределы жизнедеятельности культурного вида. Подобное наблюдение на коллекторах данного типа зависито от района выращивания и года выращивания. Таким образом, полученные данные свидетельствуют, что роль абиотических факторов в скорости воспроизводства биомассы, хотя и велика, но не является основной.

Зимой параллельно со снижением температуры воды с 8 до 0,7°C происходило резкое падение скорости продукции и, соответственно, возрастало количество элиминированных моллюсков. Весной с повышением температуры воды скорость роста увеличивается, достигая наиболее высоких значений при 13-15°C. Однако при 16 - 20°C, т.е. в пределах биокинетической зоны для медий, вновь резко снижалась скорость продуцирования биомассы и возрастала элиминация продукционного процесса наблюдался и на других типах коллекторов ($\omega_1 = 0,21$ и 0,34), но вместе с тем отмечены и определенные отличия. При низкой численности осевшей молоди медий (1,5 - 2,0 тыс. экз./м2) характер продукции процесса на коллекторах 2-го типа ($\omega_1 = 0,21$) был близок к таковому на 1-м типе коллектора. Но при высокой начальной плотности спата (более 3,0 тыс. экз./м2) второй пик массовой элиминации приходился уже не на весну, а на осень 2-го года выращивания. В то же время на коллекторах 3-го типа массовое опадение медий поздней весной или летом никогда не происходило — оно наблюдалось только осенью 2-го года выращивания, а при высокой плотности спата (более 10,0 тыс. экз./м2) массовая элиминация была зарегистрирована уже осенью, а зимой. Из приведенных данных следует, что опадение моллюсков происходит и при достаточно благоприятных абиотических факторах среды и связано не только с ними. Поэтому нами проанализирован характер распределения размерных рядов и средний размер моллюсков на каждом типе искусственного субстрата.

Анализ частотного распределения одних и тех же размерных групп моллюсков на разных типах коллекторов показал существенные различия в динамике их размерного состава. Лишь в течение первых 3-х месяцев на коллекторах наблюдалось достаточно синхронное изменение размерной структуры моллюсков. Затем характер распределения одних и тех же размерных групп на гистограммах стал существенно изменяться. На субстратах с большими значениями ω_1 начало происходить замедление скорости перехода из одной модальной группы моллюсков в другую. Гистограммы с меньшим значением ω_1 коллектора характеризовались более островершинной формой и большим преобладанием части моллюсков меньших размеров. Таким образом, медий, выращиваемые на различных типах искусственных субстратов, отличались между собой скоростью роста, что обусловлено разной плотностью моллюсков на единице длины коллектора, отмеченной нами ранее [10]. На коллекторах, имеющих наименьшую относительную площадь ($\omega_1 = 0,09$), численность моллюсков на 1 гм была
опадание связано с достижением популяцией определенного размера или модальной группы, при которых происходят существенные изменения физиологического состояния особей. По- скольку элиминация происходит поздней весной или осенью, мы предположили, что основная причина массового опадания обусловлена снижением общей функциональной активности особей, которые развиваются на фоне посленерестового истощения - своеобразного физиологического стресса [15]. Нам представляется, что именно фазы репродуктивной активности в значительной степени объясняют ход и особенности продукционного процесса на коллекторах и характер массовой элиминации мидий.

Для подтверждения этого предположения нами был исследован биохимический состав у 60 мидий размером 40 - 60 мм, ставшихся на коллекторах (KM) и опавших (OM), которые были со- браны водолазами непосредственно под коллектором (по 30 экз. каждой пробы) в начале июня. Определяли удельное содержание протеинов, липидов, гликогена, минеральных веществ, гидратацию тканей и величину гонадо-соматического индекса (ГСИ - отношение массы гонад к массе мягких тканей, %). Было обнаружено, что биохимический состав сравниваемых особей значительно различался между собой. В гонадах особей, оставшихся на коллекторах, преобладали (Р > 0,95) гликоген и протеин, в сравнении с содержанием этих компонентов у мидий, опавших с коллекторов (таблица). Прочим значения ГСИ у последних были значительно ниже (Р > 0,95), чем у моллюсков, оставшихся на коллекторах.

Таким образом, именно фазы репродуктивной активности в значительной степени обуславливают ход и особенности продукционного процесса на коллекторах. На искусственных субстратах, имеющих сравнительно небольшую относительную поверхность (1 тип субстрата), плотность моллюсков на 1 пм наименьшая, тогда как темп роста мидий, по сравнению с другими типами коллекторов, максимален. С возрастанием массы моллюска до определенного уровня происходит увеличение репродуктивного усилия, что в свою очередь обуславливает более раннюю мобилизацию и большее затраты веществ и энергии на генеративные процессы. Ухудшение условий существования у моллюсков зимой (снижение температуры воды, шторма и др.) приводит к снижению темпа роста и, соответственно, уменьшению трат на обменные процессы.

<table>
<thead>
<tr>
<th>Таблица</th>
</tr>
</thead>
<tbody>
<tr>
<td>Показатели</td>
</tr>
<tr>
<td>Печень (OM)</td>
</tr>
<tr>
<td>(KM)</td>
</tr>
<tr>
<td>Гонады (OM)</td>
</tr>
<tr>
<td>(KM)</td>
</tr>
<tr>
<td>Соматическая ткань (OM)</td>
</tr>
<tr>
<td>(KM)</td>
</tr>
</tbody>
</table>

Характеристика химического состава одноразмерных мидий (40-50 мм), опавших с коллектора (OM) и оставшихся на субстрате (KM) после 1-го года выращивания.
Россия

На черноморском побережье начало промышленное выращивание мидий

Эксперимент по промышленному выращиванию мидий проводят специалисты Краснодарского НИИ рыбного хозяйства и Всероссийского НИИ рыбного хозяйства и океанографии. Финансирует этот проект Госкомитет по рыболовству, где проводился научный конкурс, победителями которого стали краснодарские ученые.

Первый урожай в 30 т мидий будет снят в начале лета. Не досягается его, кубанские ученые уже начали рассылать планшеты неподалеку от Туапсе.

Мидии уже выращивают на Белом море, но из-за холодов там они растут три года, что в 2 раза дольше, чем в Краснодарском крае, отмечают ЮГА.ру.

В Таганроге появится новый рыбоперерабатывающий комплекс

Договоренность об этом уже достигнута. Проект, разработанный компанией «Морион» включает в себя консервный завод, холодильную установку, завод по производству жестянки.

В течение восьми лет в Ростовскую область придет 56 миллионов евро инвестиций. Мощность производства - 40 тыс. банок в сутки. Идея создания рыбоперерабатывающего комплекса прорабатывалась в течение года, при поддержке комитета рыбного хозяйства Минсельхоза Ростовской области.

Администрация области намерена этот проект поддержать, так как он принесет миллионные налоги и новые рабочие места. Продукцию предполагается выпускать в соответствии с международными стандартами, передает Дон-ТР.

REGIONS.RU

1/2004 РЫБНОЕ ХОЗЯЙСТВО УКРАИНЫ

23