Тихоокеанский научно-исследовательский рыбохозяйственный центр (ФГУП "ТИНРО-центр")

СОВРЕМЕННОЕ СОСТОЯНИЕ ВОДНЫХ БИОРЕСУРСОВ

Научная конференция, посвященная **70-лемию С.М. Коновалова**

25-27 марта 2008 г.

УДК 639.2.053.3

Современное состояние водных биоресурсов : материалы научной конференции, посвященной 70-летию С.М. Коновалова. — Владивосток: ТИНРО-центр, 2008. — 976 с.

ISBN 5-89131-078-3

Сборник докладов научной конференции «Современное состояние водных биоресурсов», посвященной 70-летию С.М. Коновалова, доктора биологических наук, профессора, директора ТИНРО в 1973–1983 гг., содержит материалы по пяти секциям: «Биология и ресурсы морских и пресноводных организмов», «Тихоокеанские лососи в пресноводных, эстуарно-прибрежных и морских экосистемах», «Условия обитания водных организмов», «Искусственное разведение гидробионтов», «Биохимические и биотехнологические аспекты переработки гидробионтов».

МАТЕРИАЛЫ К БИОТЕХНОЛОГИИ КУЛЬТИВИРОВАНИЯ ДВУСТВОРЧАТОГО МОЛЛЮСКА ANADARA BROUGHTONI (SCHRENCK, 1867)

С.А. Ляшенко ТИНРО-центр, г. Владивосток, Россия

А. broughtoni — ценный промысловый моллюск, спрос на него достаточно большой как на внешнем, так и на внутреннем рынках. По последним данным запасы в зал. Петра Великого неуклонно снижаются (Олифиренко, 2007), в связи с этим встает вопрос об искусственном разведении. В ряде стран юго-восточной Азии, таких как Республика Корея, Китай, уже ведется успешное культивирование этого вида, в том числе экстенсивными методами, предполагающими сбор спата в природе на искусственные субстраты. Для разработки технологии культивирования, адаптированной к местным гидрологическим условиям, в первую очередь необходимы знания по экологии размножения вида, в том числе по срокам нереста, развития личинок в планктоне и времени их оседания на коллекторы. Кроме того, необходимо определить участки концентрации личинок.

Сбор материала проводился в 2006 и 2007 гг. в северной части Амурского залива, где расположено самое крупное по численности и биомассе скопление этого вида в Приморье (Олифиренко, 2007). Планктонные пробы отбирали с июня по сентябрь на 12 станциях (рис. 1) с периодичностью раз в неделю. Облавливали вертикальный слой от дна до поверхности с помощью модифицированной сети Апштейна с диаметром входного отверстия 25 см и газом из капронового сита с ячеей 100 мкм. На каждой станции измеряли температуру воды у поверхности и у дна. Фиксировали и обрабатывали пробы по стандартной методике (Куликова, Колотухина, 1986).

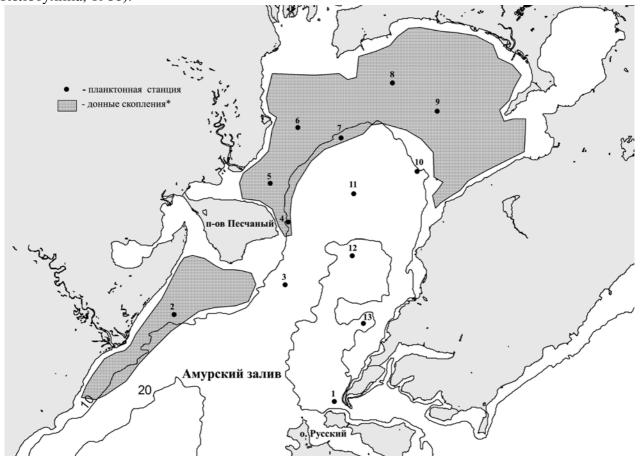


Рис. 1. Карта-схема планктонных станций в Амурском заливе (по: Олифиренко, 2002)

В 2006 г. личинки анадары в планктоне начали встречаться в третьей декаде июля, температура воды у поверхности в местах отбора проб при этом составляла 21,0-22,9 0 С. Личин-

ки были обнаружены на 8 станциях из 13 с плотностью не более 17 экз./м³ (табл. 1). Длина раковин великонхов варьировала в пределах от 150 до 250 мкм.

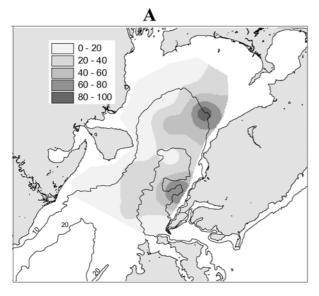
Пик численности личинок был отмечен в первой декаде августа, их концентрация достигала 91 экз./м³. В этот период были зарегистрированы самые высокие температуры за сезон, до 25,8 ^оС у поверхности и до 23,7 ^оС у дна. Центр скопления личинок находился у восточного берега Амурского залива (рис. 2).

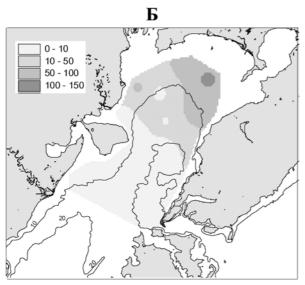
В начале третьей декады августа великонхов анадары обнаружено не было. Возможно, сказалось влияние циклона, прошедшего накануне над акваторией Амурского залива. В конце августа они были обнаружены на четырех станциях из пяти, где удалось взять пробы в связи с погодными усло-

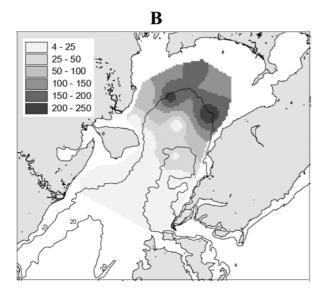
Таблица 1 Концентрация личинок *A. broughtoni* в 2006 г., экз./м 3

	Ι,			,	,				
№ стан-	Дата								
ции	25.07	7.08	23.08	30.08	6.09	13.09			
1	8	2	0	0	3	0			
2	4	0	0	17	6	0			
3	9	22	0	18	0	0			
4	0	2	0	13	2	3			
5	17	2	0	8	0	0			
6	0	0	0		0	0			
7	15	9	0		4	0			
8	8	0	0		0	5			
9	10	34	0		0	0			
10	7	91	0		0	0			
11	0	51	0		0	0			
12	0	14	0		0	0			
13	0	80	0		0	0			

виями (ст. 1–5). Их плотность не превышала 18 экз./м 3 . Они встречались по вторую декаду сентября на отдельных станциях с плотностью не более 6 экз./м 3 .


В 2007 г. личинки анадары появлялись в планктоне в начале второй декады июля на шести станциях, длина их раковины при этом варьировала в пределах от 150 до 250 мкм. Температура воды у поверхности в этот период была равна 16,1–17,6 0 С. В конце второй декады июля личинки были обнаружены на восьми станциях, кроме станций, расположенных в юго-восточной части исследованного района и у северного побережья п-ова Песчаного. Их плотность в этот период изменялась от 2 до 111 экз./м 3 (табл. 2). Наиболее высокие концентрации были зарегистрированы на северо-востоке акватории (рис. 2).


В третьей декаде июля, когда температура воды у поверхности повысилась до 21-22 ⁰C, концентрация личинок увеличилась. Они встречались на всех станциях (ст. 13 не обследовалась по техническим причинам) с плотностью от 4 до 243 экз./м³ (табл. 2). На карте горизонтального распределения видно, что в этот период они в основном концентрировались в северной части района (рис. 2).


Таблица 2 Концентрация личинок *A. broughtoni* в 2007 г., экз./м 3

$N_{\underline{0}}$	Дата								
станции	12.07	18.07	25.07	2.08	8.08	15.08	27.08	4.09	13.09
1	0	0	10		7	0	0		4
2	0	2	5	0	64	0	0	6	0
3	8	5	10	7	15	2	0	0	0
4	2	0	4	0	0	20	0	18	4
5	6	0	18	5	8	20	0	9	6
6	0	54		7	1	24	0	0	0
7	2	2	224	0		11	0	12	4
8	0	60	163	0		20	0	0	0
9	0	111	140	8		35	0	0	8
10	12	81	243	0		4	0	8	0
11	0	9	8	2		8	0	18	0
12	3	0	24	0		0	0	21	1
13	0	0		4		2	0	14	6
12	3	0	-	0		0	0	21	1

В начале августа личинки анадары встречались не на всех станциях и их плотность не превышала 8 экз./м 3 (табл. 2). В конце первой декады августа из-за погодных условий (дождь и сильный юго-восточный ветер) планктон отбирали только на первых шести станциях. Великонхи были обнаружены в концентрации от 1 до 64 экз./м 3 . Во второй декаде этого месяца, когда температура воды достигла максимальных значений, 22,0–24,7 0 C у поверхности, личинки встречались не на всех станциях, но их численность не превышала 35 экз./м 3 (табл. 2). В третьей декаде августа температура воды оставалась такой же высокой, но личинок обна-

ружено не было. Они вновь появились в начале сентября и встречались по вторую декаду этого месяца с плотностью от 1 до 21 экз./м³, но не на всех станциях единовременно (табл. 2).

Обобщенные результаты наблюдений двух лет показали, что личинки анадары Броутона в исследованном районе Амурского залива встречались в планктоне в период со второй декады июля по вторую декаду сентября. Температура воды у поверхности при этом варьировала от 16.1 до 25.8 $^{\circ}$ C, соленость от 15.9 до 29.8 %. Наиболее высокие концентрации регистрировались со второй декады июля по первую декаду августа, при температуре 21 $^{\circ}$ C и более.

Ранее накопленные и немногочисленные литературные данные (Полякова, 2003; Габаев, Колотухина, 2006) показывают, что в водах Амурского залива личинки анадары могут быть обнаружены и в более ранние сроки, с 3 декады июня. Межгодовые различия в сроках появления личинок обусловлены сроками начала нереста. По времени появления личинок в стадии оседания можно сделать предположение о начале нереста. По данным, полученным ранее на основе промеров личиночной раковины спата, оседание личинок наступает при длине раковины 250-300 мкм. В момент первого обнаружения личинок часть их них, как правило, уже достигала этих размеров. Известно, что они переходят на эту стадию через 19-23 сут с момента нереста (Каппо, 1963). Следовательно, нерест анадары в 2006 и 2007 гг. начинался в первой декаде июля и в третьей декаде июня, соответственно. В это время могли нереститься моллюски, обитающие на мелководье, на глубине не более 5-6 м, где температура воды к этому времени достигала нерестовых значений $(17-18\ ^{0}\text{C})$, характерных для этого вида в нашем регионе (Дзюба, Масленникова, 1982; Масленникова, 2000; Калинина, Викторовская, 2002; Результаты ..., 2005).

Рис. 2. Карта-схема горизонтального распределения личинок анадары (экз./м³): \mathbf{A} — 7.08.06; \mathbf{F} – 18.07.07; \mathbf{B} — 25.07.07 г.

Горизонтальное распределение личинок было изменчивым, однако в период массового развития они в основном концентрировались вблизи донных скоплений или в юго-восточной части исследованного района. Наиболее высокая плотность личинок чаще отмечалась в районе десятой станции. Их высокие концентрации ранее были отмечены южнее, далеко за пределами донных скоплений, у северо-западного побережья о. Русский (Полякова, 2003). Ха-

рактер распределения личинок, по-видимому, обусловлен не только распределением донных скоплений анадары, но и циркуляцией вод.

Направление переноса вод в Амурском заливе, как известно, в основном определяется стоком р. Раздольная, а также силой и направлением ветра и может меняться в течение суток. В июле шлейф стоковых вод обычно раздваивается, а в среднюю часть залива из открытой части проникают морские воды. В августе, в период максимального развития летнего муссона, усиливается нагон морских вод в северо-западную часть залива, шлейф чаще распространяется вдоль восточного побережья, реже раздваивается, но почти никогда не распространяется вдоль западного берега. Однако в обычном режиме скорость стокового течения затухает на расстоянии 4 км от устья и составляет всего 2–3 см/с. В этих условиях усиливается роль дрейфовых течений.

По неопубликованным данным сотрудников лаборатории промысловой океанографии ФГУП «ТИНРО-Центр», для летнего сезона наиболее характерен тип циркуляции вод, формируемый летним муссоном. В районе донного скопления анадары, расположенного в северной части залива, выше п-ова Песчаный, при умеренном южном ветре поток имеет южное направление, соответственно, личинки, обитающие в самых верхних горизонтах выносятся к югу. В подповерхностном слое существует антициклонический вихрь и личинки, обитающие на глубине в несколько метров, концентрируются вблизи донных скоплений анадары или выносятся на юго-восток.

Таким образом, на основании имеющихся данных, можно дать предварительные рекомендации о сроках и районах выставления коллекторов для сбора спата. Коллекторы следует выставлять в первой половине июля в северной части Амурского залива, в районе 10-метровой изобаты.

ЛИТЕРАТУРА

Габаев Д.Д., Колотухина Н.К. Воспроизводство анадары Scapharca broughtoni (Bivalvia, Arcidae) в заливе Петра Великого (Японское море) // Зоол. журн. — 2006. — Т. 85, № 8. — С. 925–934.

Дзюба С.М., Масленникова Л.А. Репродуктивный цикл двустворчатого моллюска Anadara broughtoni в южной части залива Петра Великого Японского моря // Биол. моря. — 1982. — № 3. — С. 34–40.

Калинина М.В., Викторовская Г.И. Особенности репродуктивной биологии анадары Броутона в Уссурийском заливе (залив Петра Великого, Японское море) // Морские прибрежные экосистемы: водоросли, беспозвоночные и продукты их переработки: Тез. докл. Первой междунар. конф. — М.: ВНИРО, 2002. — С. 23.

Куликова В.А., Колотухина Н.К. Распределение личинок некоторых промысловых двустворчатых моллюсков в северо-восточной части залива Петра Великого // Тез. докл. 4-й Всесоюз. конф. по промысловым беспозвоночным. — Севастополь, 1986. — Ч. 2. — С. 250–251.

Масленникова Л.А. Сперматогенез двустворчатого моллюска Anadara broughtoni (Schrenck) // Изв. ТИНРО. — 2000. — Т. 127. — С. 453–460

Олифиренко А.Б. Биологические основы рациональной эксплуатации ресурсов анадары (Anadara broughtoni (Mollusca: Bivalvia)) в заливе Петра Великого // Приморье — край рыбацкий: Материалы науч.-практ. конф. — Владивосток, 2002. — С. 52–55.

Олифиренко А.Б. Особенности биологии двустворчатого моллюска Anadara broughtoni в заливе Петра Великого (Японское море): Автореф. дис. ... канд. биол. наук. — Владивосток, 2007. — 23 с.

Полякова С.А. Первые сведения о личинках анадары (Anadara broughtoni) у берегов Приморья // Тез. докл. 6-й регион. конф. по актуальным проблемам экологии, морской биологии и биотехнологии студентов, аспирантов и молодых ученых Дальнего Востока. — Владивосток: ДВГУ, 2003. — С. 75–76.

Результаты 5-летних исследований репродуктивной биологии анадары Броутона в заливе Петра Великого (Японское море) // Особенности биологии и состояние запасов некоторых донных беспозвоночных прибрежных вод Приморья: Отчет о НИР / ТИНРО. № 25598. — Владивосток, 2005. — С. 189–211.

Kanno H. Breeding of the ark *Anadara broughtoni* (Shcrenck) in tank // Bull. of Tohoku Reg. Fish. Res. Lab. — 1963. — Vol. 23. — P. 108–116.