ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

Дальневосточный государственный технический рыбохозяйственный университет

РЫБОЛОВСТВО – АКВАКУЛЬТУРА

Материалы Национальной научно-технической конференции студентов, аспирантов и молодых ученых

(Владивосток, 19-20 апреля 2023 года)

Электронное издание

Организационный комитет конференции:

Председатель – канд. техн. наук, директор Института рыболовства и аквакультуры (ИРиА) ФГБОУ ВО «Дальрыбвтуз» Вальков Владимир Евгеньевич.

Зам. председателя — канд. биол. наук, доцент, зав. кафедрой «Водные биоресурсы и аквакультура», зам. директора ИРиА по научной работе Матросова Инга Владимировна.

Секретарь – ассистент кафедры «Водные биоресурсы и аквакультура» Журавлева Наталья Николаевна

Адрес оргкомитета конференции: 690087, г. Владивосток ул. Луговая 52-б, каб. 112 «Б» Дальневосточный государственный технический рыбохозяйственный университет, Телефон: (423) 290-46-46; (423) 244-11-76 http:// www.dalrybvtuz.ru E-mail: matrosova.iv@dgtru.ru

Р93 Рыболовство — аквакультура : материалы Нац. науч.-техн. конф. студентов, аспирантов и молодых ученых [Электронный ресурс]. Электрон. дан. (27,5 Mb). — Владивосток : Дальрыбвтуз, 2023. — 330 с. — Систем. требования : РС не ниже класса Pentium I ; 128 Mb RAM ; Windows 98/XP/7/8/10 ; Adobe Reader V8.0 и выше. — Загл. с экрана.

Представлены материалы, посвященные рациональному использованию водных биологических ресурсов, искусственному воспроизводству гидробионтов, экологическим проблемам и возможностям использования математических методов для решения биологических вопросов.

Приводятся результаты научных исследований студентов, аспирантов и молодых ученых.

УДК 639.2+338 ББК 65.35(2P55)

© Дальневосточный государственный технический рыбохозяйственный университет, 2023

Евгения Геннадьевна Старкова

Дальневосточный государственный технический рыбохозяйственный университет, гр. ВБм-112, Россия, Владивосток, e-mail: zhenya.starkova01@mail.ru

Научный руководитель – Светлана Евгеньевна Лескова, канд. биол. наук, доцент

Японский гребешок (Chlamys farreri nipponensis) – перспективный объект марикультуры

Аннотация. Рассмотрены некоторые особенности развития и роста японского гребешка, характер естественных скоплений, их локализация в Приморском крае.

Ключевые слова: японский гребешок, поселения, темпы роста, промысловые запасы, основания для культивирования

Evgenia G. Starkova

Far Eastern State Technical Fisheries University, VBm-112, Russia, Vladivostok, e-mail: zhenya.starkova01@mail.ru

Scientific adviser – Svetlana E. Leskova, PhD, Associate Professor

Japanese scallop (Chlamys farreri nipponensis) is a promising object of mariculture

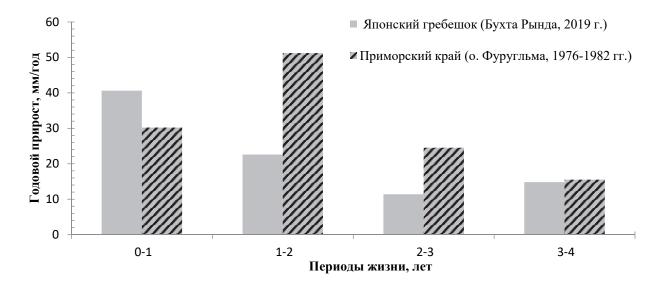
Abstract. In the article discusses some features of the development and growth of the Japanese scallop, character of natural clusters, their localization in the Primorsky Territory.

Keywords: japanese scallop, settlements, growth rates, stocks, prospects of cultivation

Водные ресурсы Дальнего Востока обладают большим потенциалом для развития рыболовства и аквакультуры, в частности марикультуры. Этот потенциал обусловлен значительными запасами освоенных, недоосвоенных и малоизученных объектов [1, с. 90]. Одним из таких является гребешок японский (Chlamys farreri nipponensis).

В Китае этот гребешок не менее важный вид марикультуры. В 1996 г. из 1 млн т гребешковой продукции на *Ch. farreri* приходилось 750–800 тыс. т [2, с. 67].

Повышенный интерес к изучению возможности культивирования этого нетрадиционного для российской марикультуры объекта был вызван достаточно высокой за последнее десятилетие оседаемостью молоди на подвесных плантациях по выращиванию приморского гребешка практически во всех марифермах [3, с. 282]. Однако отсутствие научно обоснованной и апробированной отечественной технологии по культивированию японского гребешка сдерживает процветание этой деятельности. К тому же молодь японского гребешка наряду с другими обрастателями отсортировывается и не используется [1, с. 91].


Наша работа посвящена обзору перспектив культивирования японского гребешка в Приморском крае.

О перспективности данного объекта для промышленного лова и выращивания в марикультурных хозяйствах писали в своих работах А. Ю. Баранов [4, с. 3], А. С. Помоз и А. С. Гришин [1, с. 90], Д. Д. Габаев [2, с. 67]. В настоящее время вид культивируется в ряде хозяйств совместно с приморским гребешком [4, с. 3]. Между тем освоение ресурсов японского гребешка осуществляется только в научно-исследовательских целях, также разрешен вылов в режиме спортивно-любительского рыболовства. Гребешок японский *Chlamys farreri nipponensis* – тихоокеанский приазиатский субтропический вид [5, с. 265; 6, с. 46]. Обитает в хорошо прогреваемых в летний период закрытых и полузакрытых бухтах от Желтого моря до залива Петра Великого Японского моря на глубине от 1 до 24 м. Стоит отметить, что этот вид ведет малоподвижный или прикрепленный образ жизни [1, с. 91]. Японский гребешок имеет биссусную железу, вырабатывающую биссусные нити, которыми моллюск прикрепляется к твердому субстрату. Длина раковины взрослых особей японского гребешка достигает 100–110 мм. Половозрелыми особи становятся на третьем году жизни. Нерестится японский гребешок при температуре морской воды 17–18 °С в июле–августе [7, с. 144].

По данным, опубликованным Д. Т. Карпенко, поселения японских гребешков концентрируются в мелководных бухтах Экспедиции и Новгородская залива Посьета [3, с. 284], в бухтах Новик и Рында (остров Русский, Амурский залив) [8, с. 45] и в проливе Босфор Восточный (залив Петра Великого) на глубинах от 1 до 5 м на твердых субстратах (галечный, валунный, скальный) [9, с. 128]. Промысловых скоплений гребешок не формирует в исследованных кутовых частях Амурского и Уссурийского заливов, Славянском заливе и бухте Баклан [9, с. 128]. В открытых бухтах происходит нерегулярное пополнение, а в полузакрытых и прогреваемых акваториях японский гребешок имеет нормально развивающиеся поселения [10, с. 16]. В таких районах встречаются особи разных возрастов. Часто доминируют половозрелые экземпляры (бухты Аякс, Рында, п-ов Житкова), в этом случае можно говорить об увеличении маточного стада и благоприятных условиях для воспроизводства молоди. Личинки циркулируют в толще воды благодаря течениям в основном над родительскими поселениями и в небольшом отдалении от них, обеспечивая длительное существование донных сообществ [3, с. 283–284].

Японский гребешок имеет высокие темпы роста в течение первых двух лет – длина раковины и масса тела моллюсков почти не отличаются от показателей культивирования приморского гребешка [1, с. 93; 7, с. 144].

Сравнивая материалы авторов по приросту японского гребешка в бухте Рында и приморского – у о. Фуругельма [10, с. 17; 11], можно заметить, что гребешки активнее растут в первые годы жизни (рисунок). На третьем году жизни темпы роста снижаются у обоих видов. Уменьшение скорости роста на третьем году жизни, вероятно, связано с наступлением половозрелости [11]. У приморского гребешка прирост раковины на четвертом по сравнению с третьим годом жизни сокращается в 1,5 раза, а у японского – увеличивается в 1,3 раза.

Годовые линейные приросты (мм) высоты раковины японского и приморского гребешка в различном возрасте

Д. Д. Габаев отмечает, что в Китайской Народной Республике годовики, имеющие высоту тела 20 мм в апреле, достигают товарных 60 мм уже к октябрю того же года. Автор пишет, что, несмотря на более медленные по сравнению с Китаем темпы роста, этот вид можно включать в список культивируемых [2, с. 67].

Исходя из оценки современных промысловых запасов, проведенной в научноисследовательских целях, лидирует бухта Новик, в ней сосредоточено 347,8 т гребешка. Меньше всего запасов гребешка в бухте Рында — 7,7 т. Общий запас *Ch. farreri* в заливе Петра Великого был оценен в 607,8 т на площади 4,16 км², промысловый запас — 478,6 т. В заливе Посьет промысловый запас гребешка составил 67 т [9, с. 129].

Определяя перспективность культивирования японского гребешка на территории Приморского края, приведем сформировавшийся ряд оснований.

В отличие от приморского гребешка японский активно растет в теплых водах и мелководных бухтах. Такая особенность дает возможность выращивать этот вид в южных прибрежных районах Приморского края, где инфраструктура лучше развита. Кроме того, становится практичным использование привычного подвесного метода культивирования гребешка в закрытых и полузакрытых мелководных хорошо прогреваемых бухтах. Выращивание приморского гребешка таким методом в данных условиях не представляется допустимым.

Учитывая неподвижный образ жизни этого вида, появляется возможность рекомендовать к использованию коллекторы для сбора спата и подращивания до товарных размеров мидии — гибкие, веревочно-субстратные с различными жесткими и мягкими вставками на канатной хребтине [12, с. 135].

Еще одним основанием для культивирования японского гребешка является его активный рост в первые два года жизни. В Китае японский гребешок достигает товарных размеров (60 мм) в возрасте двух лет. Для некоторых районов побережья Приморья это тоже характерно, например, бухты Воевода и Рында [2, с. 67; 10, с. 17]. Кроме того, выращиваемые в данных бухтах объекты – тихоокеанская устрица, тихоокеанская мидия – достигают своих товарных размеров к тому же возрасту.

Мясо японского гребешка по пищевой ценности не уступает приморскому и может быть использовано для производства пищевой продукции [3, с. 282].

Японский гребешок (*Chlamys farreri*) все еще продолжает оставаться лишь перспективным объектом культивирования, однако имеет все основания быть активно культивируемым видом.

Библиографический список

- 1. Помоз А. С., Гришин А. С. Гребешок японский (*Chlamys farreri nipponensis*) перспективный объект марикультуры и промышленной переработки // Вестник АГТУ. Серия: Рыбное хозяйство. 2014. № 4. С. 90–93.
- 2. Габаев Д. Д. Рост морского гребешка *Azumapecten farreri* (Jones et preston, 1904) в заливе Петра Великого (Японское море) // Морская биология в 21 веке: систематика, генетика, экология морских организмов : тез. докл. Всерос. конф. (памяти академика Олега Григорьевича Кусакина), 20–23 сентября 2022 г. Владивосток : ННЦМБ ДВО РАН, 2022. С. 67.
- 3. Седова Л. Г., Соколенко Д. А. Состояние поселений гребешка *Chlamys farreri* в заливе Петра Великого (Японское море) // Морские биологические исследования: достижения и перспективы : сб. материалов Всерос. науч.-практ. конф. с международным участием. Севастополь : ЭКОСИ-Гидрофизика, 2016. Т. 1. С. 282–284.
- 4. Баранов А. Ю. Состав флоры эпибиоза трех видов гребешка и тихоокеанской устрицы в прибрежных водах южного Приморья // Комплексные исследования в рыбохозяйственной отрасли : материалы IV Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых [Электронный ресурс]. Владивосток : Дальрыбвтуз, 2018. С. 3.

- 5. Скарлато О. А. Двустворчатые моллюски умеренных широт западной части Тихого океана. Л.: Наука, 1981. С. 265.
- 6. Лутаенко К. А., Ноусворти Р. ДЖ. Каталог современных двухстворчатых моллюсков континентального побережья Японского моря [на англ. яз.] // Бюллетень дальневосточного малакологического общества. Владивосток: Дальнаука, 2012. Т. 17. С. 46.
- 7. Супрунович А. В. Культивируемые беспозвоночные. Пищевые беспозвоночные: мидии, устрицы, гребешки, раки, креветки. Киев: Наук. думка, 1990. С. 144.
- 8. Карпенко Д. Т. Характеристика поселений японского гребешка *Chlamys farreri* в бухте Новик острова Русский (Японское море) // Комплексные исследования в рыбохозяйственной отрасли: материалы IV Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых. Владивосток: Дальрыбвтуз, 2018. С. 45.
- 9. Карпенко Д. Т. Запасы японского гребешка *Chlamys farreri* (Bivalvia, Pectinidae) в заливе Петра Великого (Японское море)). // Комплексные исследования в рыбохозяйственной отрасли: материалы VIII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых. Владивосток: Дальрыбвтуз, 2023. С. 128–129.
- 10. Карпенко Д. Т. Темпы роста японского гребешка (*Chlamys farreri*) в бухтах прибрежной зоны острова Русский (залив Петра Великого, Японское море) // Комплексные исследования в рыбохозяйственной отрасли : материалы V Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых. Владивосток : Дальрыбвтуз, 2019. С. 16–17.
- 11. Рост приморского гребешка. Режим доступа : https://oxotskoe.arktikfish.com/index.php/akvaku/970-rost-primorskogo-grebeshka (дата обращения : 28.03.2023).
- 12. Крючков В. Г. Коллектор для выращивания мидий // Основные результаты комплексных исследований в Азово-Черноморском бассейне и Мировом океане. Керчь : ЮгНИРО, 2013. № 51. С. 135.