ПРАВИТЕЛЬСТВО АСТРАХАНСКОЙ ОБЛАСТИ МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ МИНЗДРАВА РОССИИ

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАЛМЫЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Б. Б. ГОРОДОВИКОВА ПРИКАСПИЙСКИЙ АГРАРНЫЙ ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР РАН

КАСПИЙ В ЦИФРОВУЮ ЭПОХУ

Сборник материалов Национальной научно-практической конференции с международным участием в рамках Международного научного форума «Каспий 2021: пути устойчивого развития»

27 мая 2021 года

THE CASPIAN IN THE DIGITAL EPOCH

Collection of materials of the National Research and Practice Conference with International Participation within the framework of the International Scientific Caspian 2021: Ways of Sustainable Development"

May 27, 2021

Рекомендовано к печати редакционно-издательским советом Астраханского государственного университета

Редакционная коллегия:

- **Крюкова Е. В.,** канд. экон. наук, доцент, заведующий кафедрой мировой экономики и финансов АГУ (модератор секции 1 «Международные транспортные коридоры и логистические центры»);
- **Титов А. В.,** канд. техн. наук, проректор по цифровизации, инновациям и приоритетным проектам АГУ (модератор секции 2 «Морская техника, судостроение и технологии освоения ресурсов Мирового океана»);
- **Удочкина Л. А.,** д-р мед. наук, профессор, заведующий кафедрой нормальной и патологической анатомии АГМУ (модератор секции 3 «Медицинское образование и наука в эпоху цифровизации»);
- **Лазько М.В.**, д-р биол. наук, профессор, заведующий кафедрой зоотехнии и технологий переработки сельскохозяйственной продукции АГУ (модератор секции 4 «Инновационные биоагропромышленные технологии для агробизнеса Каспия»);
- **Бахарева А.А.,** д-р с.-х. наук, профессор, заведующий кафедрой «Аквакультура и рыболовство» АГТУ (модератор секции 5 «Приоритетные направления развития аквакультуры в Прикаспии»);
- **Романова А. П.,** д-р филос. наук, профессор, директор Института исследования проблем Юга России и Прикаспия АГУ (модератор секции 6 «Комплексная безопасность Каспийского макрорегиона в цифровую эпоху: социокультурные, геополитические, экономические и экологические аспекты»);
- **Кошкаров А. В.,** канд. техн. наук, доцент, руководитель проектного офиса «Искусственный интеллект» АГУ (модератор секции 7 «Финансовая кибербезопасность»);
- **Лежнина Ю. А.,** канд. техн. наук, доцент, проректор по научной работе и международной деятельности АГАСУ (модератор секции 8 «Приоритетные направления развития комфортной городской среды в Прикаспийском регионе»).

Каспий в цифровую эпоху: материалы Национальнойя научно-практической конференции с международным участием в рамках Международного научного форума «Каспий 2021: пути устойчивого развития» (27 мая 2021 года) = The Caspian in the digital epoch: collection of materials of the National Research and Practice Conference with International Participation within the framework of the International Scientific Forum "Caspian 2021: Ways of Sustainable Development" (May 27, 2021) / составитель В. В. Родненко. – Астрахань: Астраханский государственный университет, Издательский дом «Астраханский университет», 2021. – 625 с. – 1 CD-ROM. – Систем. требования: Intel Pentium 1.6 GHz и более; 18,4 Мб (RAM); Microsoft Windows XP и выше: Firefox (3.0 и выше) или IE (7 и выше) или Орега (10.00 и выше). Flash Player, Adobe Reader. – Загл. с титул. экрана. – Текст: электронный.

ISBN 978-5-9926-1295-0

- © Астраханский государственный университет, Издательский дом «Астраханский университет», 2021
- © Родненко В. В., составление, 2021
- © Коллектив авторов, 2021
- © Стремина А. И., оформление обложки, 2021

СЕКЦИЯ 5

УДК: 639.3.09

ВЛИЯНИЕ РАСТВОРОВ ХЛОРИДА НАТРИЯ РАЗЛИЧНЫХ КОНЦЕНТРАЦИЙ НА ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ БЕЛУГИ В ПЕРИОД ИНКУБАЦИИ.

Баринова В. В., Перунова М. Е. Тангатарова Р. Р.

Волжско-каспийский филиала ФГБНУ «ВНИРО» («КаспНИРХ»), г. Астрахань, Россия, e-mail: batina87@bk.ru

Бахарева А. А.

Астраханский государственный технический университет, г. Астрахань, Россия, e-mail:astu@astu.org

Аннотация

В статье переведены результаты гистологического анализа оплодотворенной икры белуги, обработанной 3,0%-м и 4,0%-м растворами хлорида натрия с целью ингибирования роста и развития сапролегниевых микромицетов. В ходе исследования выявлено, что 3,0%-й раствор хлорида натрия оказывал минимальное негативное воздействие на эмбриональное развитие белуги.

Ключевые слова: эмбрионы, гистологический анализ, белуга, сапролегния, аномалии, растворы хлорид натрия, обработки, опытные группы.

THE EFFECT OF SODIUM CHLORIDE SOLUTIONS OF VARIOUS CONCENTRATIONS ON THE EMBRYONIC DEVELOPMENT OF BELUGA WHALES DURING INCUBATION.

Barinova V. V., Perunova M. E., Tangatarova R. R.

Volga-Caspian branch of the VNIRO ("CaspNIRKH"), Astrakhan, Russia

e-mail: batina87@bk.ru

Bakhareva A. A. Astrakhan State Technical University, Astrakhan, Russia,

e-mail: astu@astu.org

Annotation

The article translates the results of histological analysis of fertilized beluga caviar treated with 3.0% and 4.0% sodium chloride solutions to suppress the growth and development of saprolegniummicromycetes. The study revealed that a 3.0% solution of sodium chloride had a minimal negative effect on the embryonic development of the beluga.

Key words: embryos, histological analysis, beluga, saprolegnia, anomalies, sodium chloride solutions, treatments, experimental groups.

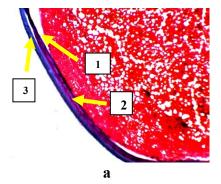
Самым распространённым заболеванием, наносящим значительный ущерб искусственному воспроизводству и товарному выращиванию рыб, является сапролегниоз, возбудитель которого поражает все возрастные группы гидробионтов. Перечень лекарственных средств, разрешенных для лечения данного заболевания, ограничен, а для осетровых видов рыб отсутствует.

Актуальным направлением исследований является поиск эффективных и безопасных средств борьбы с сапролегниозом в области аквакультуры, так как, наряду с дефицитом лекарственных средств от этого заболевания, органические красители, ранее использованные на предприятиях для профилактики и лечения сапролегниоза, запрещены к применению

в аквакультуре. Исследования по определению степени воздействия растворов хлорида натрия на рост и развитие сапролегниевых микромицетов (Баринова, 2020), проведенные ранее, показали, что данное вещество оказывает ингибирующее действие на развитие микромицетов сем. Saprolegniaceae. При этом литературных сведений о влиянии этого препарата на эмбриональное развитие рыб недостаточно. В связи с этим целью проводимых исследований является оценка степени влияния растворов пероксида водорода на эмбриональное развитие осетровых видов рыб.

Исследования проводили на базе научно-экспериментального комплекса аквакультуры «БИОС» Волжско-Каспийского филиала ФГБНУ «ВНИРО» («КаспНИРХ»). В качестве объектов в исследованиях использовали оплодотворенную икру белуги искусственных генераций.

Эмбрионы в яйцевых оболочках опытных групп обрабатывали растворами хлорида натрия, контрольной группы — не обрабатывали. Для обработки икры белуги использовали растворы хлорида натрия концентрацией 3.0 и 4.0 % с экспозицией 1 мин.


Обработку проводили в два этапа методом кратковременных ванн [4]. Первую обработку эмбрионов стерляди проводили на стадии сближения нервных валиков (21-я стадия) и на стадии короткой сердечной трубки (27-я стадия) [2, 3].

Температура воды в период инкубации была оптимальной и составляла 16,5 °C, активность ионов водорода (pH) - 8,1. В течение всего периода инкубации осуществляли контроль за количеством нормально развивающихся эмбрионов стерляди и белуги [1].

Гистологические исследования тканей эмбрионов на разных стадиях развития проводили в лаборатории молекулярной генетики и физиологии Волжско-Каспийского филиала ФГБНУ «ВНИРО» («КаспНИРХ») стандартными методами [5].

Гистологические исследования проводили с фиксацией в жидкости Буэна и дальнейшей проводкой через серию спиртов возрастающей крепости и заливкой в парафин. При изготовлении гистологических препаратов использовали окраску гематоксилин-эозином и кислым фуксином с доокраской по Маллори. Для просмотра препаратов использовали микроскоп OLYMPUS BX40. Фотографии изготовили с помощью цифровой камеры-окуляра для микроскопа ДСМ500.

Исследования влияния хлорида натрия на развитие белуги в эмбриональном периоде показали увеличение количества аномально развивающихся эмбрионов. Количество аномалий после двукратной обработки икры 3,0%-м раствором составило 5.0 ± 2.8 %, 4.0%-м -8.5 ± 1.5 %. Количество аномалий в контрольной группе составило 7.01 ± 1.3 %.

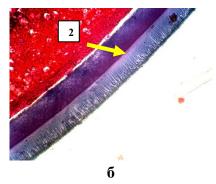
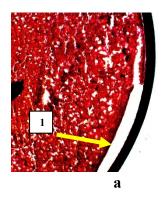


Рисунок 1. Фрагменты оплодотворенной яйцеклетки белуги, 28 стадия развития до обработки растворами пероксида водорода (окраска кислым фуксином с докраской по Маллори). Ув. 10×10 (а), ув 40×10 (б): 1 — отслаивание желточной оболочки; 2 — неравномерное окрашивание желточной оболочки; 3 — расслаивание оболочек


Анализ результатов гистологических исследований установил увеличение степени выраженности аномалий тканей у эмбрионов, подверженных обработке хлоридом натрия с увеличением концентрации его растворов. В контрольной группе белуги нарушения проявлялись

в изменениях структуры оболочек оплодотворенных яйцеклеток (рис. 1). Строение студенистой оболочки соответствовало нормальному, желточные оболочки окрашивались неравномерно, отмечено отслаивание желточных оболочек от содержимого икры, а также расслаивание студенистой и желточной оболочек.

Основные аномалии, отмеченные у эмбрионов белуги после двух последовательных обработок, были связаны с изменениями в оболочках. Схожая морфологическая картина наблюдалась и в контроле.

После двух последовательных обработок 3,0%-м раствором хлорида натрия зарегистрированы разрывы и неравномерность окрашивания студенистой оболочки, а также отсла-ивание желточной оболочки от содержимого (рис. 2).

В опытной группе с использованием 4,0%-го раствора хлорида натрия отмечены, как и в опытной группе, с 3,0%-м раствором, отслаивание желточной оболочки и неравномерное окрашивание и разрывы студенистой оболочки, а также видны участки с истончившейся студенистой оболочкой (рис. 3).

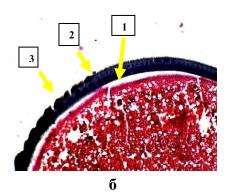



Рисунок 2. Фрагменты оплодотворенной икры белуги, обработанной 3,0%-м раствором хлорида натрия, 28 стадия развития. Ув. 10×10 (окраска кислым фуксином с докраской по Маллори): 1 – отслаивание желточной оболочки; 2 – неравномерное окрашивание студенистой оболочки; 3 – разрыв студенистой оболочки

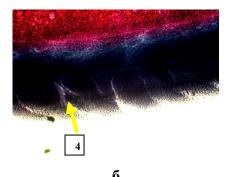


Рисунок 3. Фрагменты оплодотворенной икры белуги, обработанной 4,0%-м раствором хлорида натрия, 28 стадия развития. Ув. 40×10 (окраска кислым фуксином с докраской по Маллори): 1 — истончение студенистой оболочки; 2 — отслаивание желточной оболочки; 3 — неравномерное окрашивание студенистой оболочки; 4 — разрыв студенистой оболочки

Таким образом, степень негативного влияния хлорида натрия повышалась с увеличением концентрации его растворов, однако, в опытной группе с использованием 3,0%-го раствора, количество аномалий было минимальным. Это позволяет предположить, что использование 3,0%-го раствора хлорида натрия для подавления роста сапролегниевых микромицетов не приведет к возникновению большого количества нарушений в строении оболочек эмбрионов белуги.

Литература:

- 1. Акимова Н. В., Горюнова В. Б, Микодина Е. В., Никольская М. П., Рубан Г. И., Соколова С. А., Шагаева В. Г., Шатуновский М. И. Атлас нарушений в гаметогенезе и строении молоди осетровых. М.: ВНИРО, 2004. 120 с.
- 2. Детлаф Т. А., Гинзбург А. С. Зародышевое развитие осетровых рыб (севрюги, осетра и белуги) в связи с вопросами их разведения. М.: Академия наук СССР, 1954. 228 с.
- 3. Ларцева Л. В., Обухова О. В., Алтуфьев Ю. В. Сапролегниоз икры ценных видов рыб при искусственном разведении в дельте р. Волги: таксономия, экология, профилактика и терапия. Астрахань: Издатель Сорокин Роман Васильевич, 2017. 98 с.
- 4. Рахконен Р., Веннерстрем П., Ринтамяки П., Каннел Р. Здоровая рыба. Профилактика, диагностика и лечение болезней. 2-е изд. перераб. и доп. Helsinki: Nykypaino, 2013. 180 с.
 - 5. Ромейс Б. Микроскопическая техника. М., 1954. 718 с.