ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии» (ФГБНУ «ВНИРО»)

IX Научно-практическая конференция молодых учёных с международным участием, посвященная 140-летию ВНИРО

СОВРЕМЕННЫЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ РЫБОХОЗЯЙСТВЕННОГО КОМПЛЕКСА

11-12 ноября 2021 года, г. Москва

Москва ФГБНУ «ВНИРО», 2021

Рецензенты:

Орлов А.М., д.б.н., главный научный сотрудник ФГБНУ «ВНИРО», зав. лабораторией ФГБУН «Институт океанологии им. П.П. Ширшова РАН»

 $\it Mикодина E.B.,$ д.б.н., начальник отдела «Аспирантура и докторантура» ФГБНУ «ВНИРО»

 $\mathit{Cumdянов}\ \mathit{T.\Gamma.},\ \mathrm{к.б.н.},\ \mathrm{доцент}\ \mathrm{кафедры}\ \mathrm{зоологии}\ \mathrm{беспозвоночных}\ \mathrm{Биологического}\ \mathrm{факультета}\ \mathrm{M}\Gamma\mathrm{У}\ \mathrm{им.}\ \mathrm{M.B.}\ \mathrm{Ломоносовa}$

С56 Современные проблемы и перспективы развития рыбохозяйственного комплекса: материалы IX Научно-практической конференции молодых учёных с международным участием, посвященной 140-летию ВНИРО / Под ред. И.И. Гордеева, К.К. Киввы, О.В. Воробьевой, Л.О. Архипова, Е.М. Лаврухиной – М.: Издво ВНИРО, 2021. – 211 с.

Логотип конференции – Мария Норкина. Оформление обложки – И.И. Гордеев.

Оценка динамики и ориентиров управления запасами Калуги Acipenser dauricus

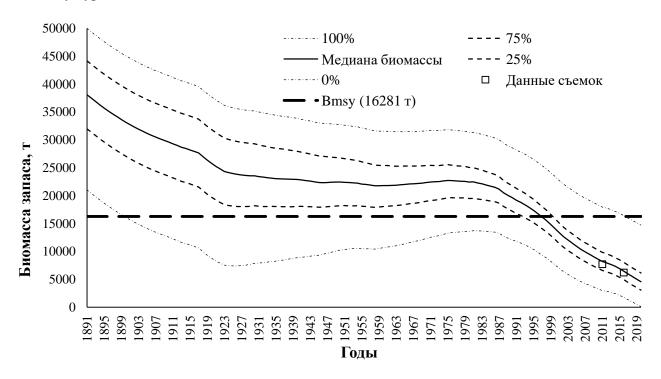
 \mathcal{A} .С. \mathcal{A} иденко 1 , В.Н. Кошелев 1

¹Хабаровский филиал ФГБНУ ВНИРО (ХабаровскНИРО), г. Хабаровск E-mail: Didenko@khabarovsk.vniro.ru

Аннотация. В работе представлены результаты моделирования динамики запаса калуги методом DB-SRA, установлены целевые ориентиры управления промыслом. Оценка проведена на основании данных официального вылова калуги в р. Амур и Амурском лимане, оценок ННН-промысла взятых из ряда научных работ, а также данные съемок 2011 и 2016 гг. **Ключевые слова**: калуга *Acipenser dauricus*, Амурский лиман, методы оценки запасов, нелегальный вылов, метод DB-SRA

Целью работы была ретроспективная оценка динамики биомассы запаса, и нахождение биологических и промысловых целевых ориентиров управления (MSY, B_{MSY} и F_{MSY}) калуги в р. Амур и Амурском лимане. Для этого была применена модель DB-SRA из семейства так называемых методов «data-limited» - запасов с ограниченным или бедным информационным обеспечением, процедура расчетов которого реализована в программной среде R в пакете fishmethods (Nelson, 2017).

Формирование входных данных для введения в модель DB-SRA для запаса калуги выполнялась несколькими способами. Первый способ — сбор данных официального вылова калуги в р. Амур и Амурском лимане проводили с использованием данных об уловах из ряда работ (Солдатов, 1915; Никольский, 1956; Енютина, 1962; Wang, Chang, 2006) и ежегодной статистики. Оценка ННН-изъятия была использована из ряда работ (TRAFFIC, 2002; Новомодный и др., 2004; Кошелев, Беспалова, 2007), а также данные съемок 2011 и 2016 гг.


Таблица. Апостериорные параметры модели DB-SRA и оцененные целевые ориентиры запаса калуги р. Амур и его лимана

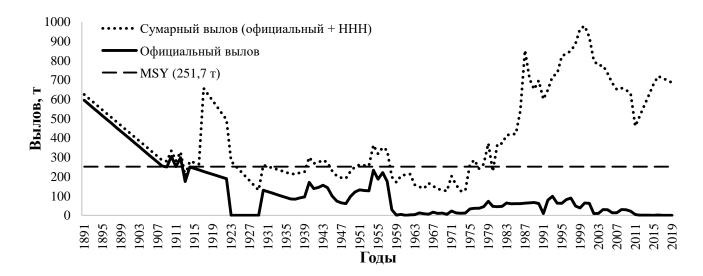
Ориентиры управления запасом				
	Среднее	Медианное		
	значение	значение	2.5%	97.5%
MSY - теоретически возможный				
максимальный устойчивый улов, т	251,973	251,654	142,404	365,823
Bmsy - биомассы запаса,				
обеспечивающая MSY, т	16786,974	16280,982	8780,039	26827,729
Fmsy - величина промысловой				
смертности, обеспечивающая MSY	0,017	0,016	0,007	0,034
К - биомасса «девственного»				
необловленного запаса, т	37883,641	38094,363	23895,987	49891,228
Параметры модели				
Fmsy/M	0,609	0,603	0,428	0,833
Bt/K	0,174	0,171	0,093	0,276
Bmsy/K	0,463	0,449	0,19	0,794
M	0,028	0,026	0,013	0,055

Эти данные позволили оценить динамика биомассы промыслового запаса калуги за период 1890—2020 гг. (рис. 1.) Величина М, отношения Fmsy/M и Bmsy/K и их верхняя и нижняя границы, значения минимальной границы необловленного запаса, медиана возраста полового созревания, отношения Bt/K и B1/K были рассчитаны (таблица).

Оцененную биомассу в годы-ориентиры (2011 и 2016 гг.) сопоставляли с оценкой биомассы промыслового запаса калуги этого же года, полученной суммированием оценок по съемке в лимане р. Амур и экспертной оценкой ННН-промысла. Полученные величины биомассы достаточно близки: по модели DB-SRA составляет 8204,77 т и 6443,4 т; по данным сетной съемки в лимане и экспертной оценкой ННН-промысла – 7699,73 т и 6219,48 т в 2011 и 2016 гг. соответственно. Таким образом, полученная модель запаса соответствует нашим преставлениям о состоянии запаса калуги.

Полученная модель показывает динамику падения биомассы запаса калуги в моделируемый период лет (1890–2020 гг.). Вплоть до 1927 г. прослеживается стремительное сокращение запаса, после чего запас стабилизировался на 22,0 тыс. т. После 1991 г. биомасса вновь начала сокращаться и данное падение продолжается вплоть до настоящего момента, достигнув уровня 4565,9 т.

Рис. 1. Динамика промыслового запаса калуги по модели DB-SRA относительно оцененной величины B_{MSY}


Сравнительный анализ объемов официального и браконьерского изъятий калуги относительно величины найденного ориентира *MSY* объясняет динамику биомассы запаса. Два периода сокращения биомассы, является следствием интенсивного перелова в 1890–1925 и 1985–2020 гг. (рис. 1.), вызванное нелегальным промыслом. В эти периоды вылов мог достигать значений в 2 раза превышающих уровня MSY – 251,7 т, что приводило к сокращению запаса до указанного уровня.

Период 1925—1987 гг. характеризуется относительно «приемлемой» эксплуатацией запаса калуги, не смотря на присутствие ННН-изъятия (рис. 2.). В это время суммарный вылов не превышал уровня МЅУ, составляя в среднем 237,6 т. Ежегодные объемы вылова калуги в рассматриваемый период позволяли сохранить стабильный уровень биомассы.

Моделирование прогнозной динамики запаса калуги проводилось с помощью модифицированного уравнения модели DB-SRA, которая была апробирована на запасе севрюги Каспийского моря (Сафаралиев и др., 2019; Ye, Valbo-Jorgensen, 2012). Изменение

уравнения модели позволят смоделировать прогнозную динамику запаса при дополнительных параметрах — задаваемые объемы ННН-изъятия (IC) и ежегодное пополнение от искусственного воспроизводства (R) от двух OP3 — Анюйского (Хабаровский край) и Владимировского (EAO).

Моделирование сценариев прогнозной динамики биомассы промыслового запаса калуги показало, что ННН-изъятие является доминирующим фактором, препятствующим восстановлению запаса. Для восполнения убыли от ННН-изъятия при 10% и более от запаса необходимо значительно интенсифицировать искусственное воспроизводство калуги.

Рис. 2. Динамика изъятия промыслового запаса калуги р. Амур за период 1910–2019 гг. относительно оцененной величины MSY

Моделирование показало, что при максимально благоприятных условиях: полной ликвидации браконьерского вылова и сохранении текущего уровня искусственного воспроизводства запас достигнет целевого ориентира B_{MSY} в 16281,0 т к 2058 году.

Благодарности. Авторы выражают благодарность И.А. Сафаралиеву (ФГБНУ «КаспНИРХ», г. Астрахань) за переданный опыт и помощь в освоении современных моделей.

Список литературы

Енютина Р.И. 1962. Некоторые вопросы биологии калуги в нижнем течении и лимане Амура. Известия ТИНРО 58: 156-164.

Кошелев В.Н., Беспалова Е.В. 2007. Оценка уровня промысла амурских осетровых // Экология и безопасность водных ресурсов. Мат-лы рег. науч.-прак. конф. Хабаровск: Изд-во ДВГУПС. С. 137-142.

Новомодный Г.В., Золотухин С.Ф., Шаров П.О. 2004. Рыбы Амура: богатство и кризис. Владивосток: Изд-во Апельсин. С. 21-34.

Солдатов В.К. 1915. Исследование осетровых Амура // Материалы к познанию русского рыболовства 3 (12). Петроград. Изд-во Киршбаума, 415 с.

Сафаралиев И.А, Рубан Г.И., Булгакова Т.И. 2019. Каспийская севрюга: распределение, оценка запаса и сценарии восстановления волжской популяции. М.: Изд-во ВНИРО, 56 с.

Dick E.J., MacCall A.D. 2017. Depletion-based stock reduction analysis: a catch based method for determining sustainable yields for data-poor fish stocks. Fish. Res. 110: 331–341.

Nelson G.A. 2017. Fishmethods: fishery science methods and models in R. R package version 1.10-0.4. [Электронный ресурс]. Режим доступа: https://CRAN.R-project.org/package=fishmethods.

TRAFFIC. 2002. Report of Illegal Sturgeon Fishing in Amur Basin. Moscow, 45 p.

Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. Springer, New York, 268 p.

Ye Y., Valbo-Jorgensen J. 2012. Effects of IUU fishing and stock enhancement on and restoration strategies for the stellate sturgeon fishery in the Caspian Sea. Fish. Res. 131-133 (21-29).

Wang B., Chang J. 2006. Status and conservation of sturgeons in Amur River, China: A review based on surveys since the year 2000. J. Appl. Ichthyol. 22 (Suppl. 1): 44-52.