ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА И ОКЕАНОГРАФИИ»

Полярный филиал ФГБНУ «ВНИРО» («ПИНРО» им. Н.М. Книповича)

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ОСВОЕНИЯ ВОДНЫХ БИОЛОГИЧЕСКИХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

Материалы всероссийской конференции ученых и специалистов, посвященной 160-летию Н.М. Книповича

(г. Мурманск, 27-28 октября 2022 г.)

А 43 **Актуальные** проблемы освоения водных биологических ресурсов Российской Федерации: материалы всероссийской конференции ученых и специалистов, посвященной 160-летию Н.М. Книповича (г. Мурманск, 27-28 октября 2022 г.) / Полярный филиал ФГБНУ «ВНИРО» («ПИНРО» им. Н.М. Книповича); ответственный редактор К.М. Соколов. — Мурманск: ПИНРО им. Н. М. Книповича, 2023. — 707 с.

ISBN 978-5-86349-286-5

Сборник подготовлен по материалам Всероссийской конференции ученых и специалистов «Актуальные проблемы освоения водных биологических ресурсов Российской Федерации», посвященной 160-летию со дня рождения выдающегося ученого-мореведа, ихтиолога и океанолога Н.М. Книповича. Организатор конференции – Полярный филиал ФГБНУ «ВНИРО».

В книге представлены результаты исследований в области оценки состояния запасов и распределения водных биологических ресурсов, изучения среды обитания, воспроизводства гидробионтов и особенностей формирования их сообществ, обозначены основные аспекты современного состояния и перспективы развития промысла в морских и пресноводных акваториях Российской Федерации. Включены доклады, освещающие историю океанографических исследований, изменчивость гидрологических и гидрохимических режимов различных водных объектов. Уделено внимание вопросам мониторинга загрязнения водоемов, антропогенного влияния на биоту экосистем, современным методам защиты экосистем. Рассмотрены перспективы биохимических исследований и направлений развития технологии переработки биологических ресурсов, а также проблемы в области стандартизации и отраслевого технологического нормирования. Проанализированы вопросы разнообразия промысловых гидробионтов, использования полученных результатов в регулировании рыболовства.

Сборник предназначен для специалистов, интересующихся различными аспектами решения проблем, присущих современному отечественному рыбному хозяйству.

Редакционная коллегия:

М.Ю. Анциферов, С.В. Баканев, А.В. Долгов, А.Ю. Жилин, В.Б. Забавников, А.В. Зубченко, В.А. Ившин, А.Б. Карасев, Ю.А. Ковалев, И.Н. Мухина, М.А. Новиков, А.А. Павленко, К.М. Соколов (ответственный редактор), А.В. Стесько, Л.А. Шаповалова

ПРИМЕНЕНИЕ ПРОДУКТОВ МИКРОБИОСИНТЕЗА И ИХ ГИДРОЛИЗАТОВ В КАЧЕСТВЕ ИСТОЧНИКА ДОСТУПНОГО БЕЛКА В СТАРТОВЫХ КОРМАХ ДЛЯ СУДАКА

А.А. Лютиков¹, А.В. Барышников², А.Е. Королев¹, А.Е. Трифонов¹, Н.В. Шумская², В.Ю. Новиков²

- ¹ Санкт-Петербургский филиал ФГБНУ «ВНИРО» («ГосНИОРХ» им. Л. С. Берга), г. Санкт-Петербург
- ² Полярный филиал ФГБНУ «ВНИРО» («ПИНРО» им. Н.М. Книповича),
- г. Мурманск

Успешное выращивание ранней молоди рыб является необходимым условием для получения высококачественного жизнестойкого посадочного материала, который в дальнейшем может быть использован как в товарной аквакультуре, так и для целей воспроизводства. Для некоторых видов рыб, таких как, например, лососевые и сиговые, технология личиночного выращивания разработана и активно эксплуатируется на рыбоводных заводах (Биологические особенности молоди..., 2007), что обусловлено в первую очередь созданием и коммерческим производством полноценных сбалансированных стартовых кормов, позволяющих выращивать молодь указанных видов без зоопланктона (Включение в стартовые..., 2018). Напротив, для рыб с мелкой икрой, таких как судак, подобная технология находится на этапе разработки, процесс которой усложняется отсутствием специализированных стартовых кормов – лимитирующим фактором для введения данного объекта в индустриальную аквакультуру. В связи с этим для судака в качестве первого корма используют мелкие формы фито- и зоопланктона – микроводоросли, коловратки, науплии ракообразных и т.п.

Ранее нами проводились исследования по разработке стартовых кормов для судака на основе продуктов микробиосинтеза; выживаемость подрощенной на монодиете из искусственного корма молоди через 30 сут не превышала 12,5 % (Лютиков, Королев, Остроумова, 2020). Как можно предположить, протеин микробиологического происхождения не вполне соответствует потребностям личинок с неразвитой пищеварительной функцией, в связи с чем повышение доступности протеина в стартовых кормах для судака может быть достигнуто за счет его гидролиза.

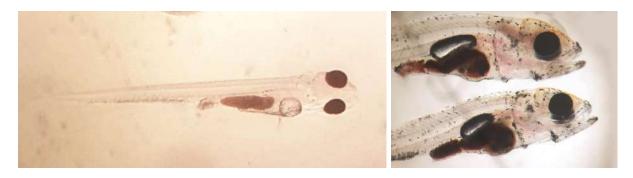
Гидролизаты белкового сырья в работах по исследованию стартовых кормов для рыб стали применять с 1970-х годов и впервые использовали в «Эквизо» — первом стартовом корме для ранней молоди рыб, внедренном на промышленном уровне (Остроумова, Аршавский, Иванов, 1986). В настоящее время гидролизаты различных белковых кормовых компонентов

широко используются в стартовых кормах для личинок как морских, так и пресноводных видов рыб — трески *Gadus morhua*, палтуса *Hippoglossus hippoglossus* (Effect of pre-digested..., 2002), морского леща *Sparus aurata* (Kolkovski, Tandler, 2000), карпа *Cyprinus carpio* (Solubility and peptide..., 2004) и др.

Учитывая актуальность выбранной темы, цель данного исследования — испытать возможность использования гидролизатов высокобелковых продуктов микробиологического синтеза в стартовых кормах для судака.

Исследования по выращиванию личинок судака проводили в июнеиюле 2021 г. на рыбоводном хозяйстве ООО «Форват» (оз. Суходольское, Ленинградская обл.). Икру брали от производителей судака, содержащихся в садках рыбоводного хозяйства на живом корме – рыбах сиговых видов, выбракованных при бонитировке. Нерест проводили в бассейнах с использованием нерестового субстрата (рамки из проволоки, обтянутые капроновой делью), икру инкубировали в модифицированной моросильной камере Войнаровича (Королев, Терешенков, 1995). После вылупления и становления на плав (18 июня) личинки для выращивания на диетах были рассажены в 6 аппаратов Вейса, каждый – объемом 8 л, в количестве 100 экз./л (800 экз./аппарат). Масса личинок на момент рассадки – около 0,4 мг. Кормление начинали сразу после рассадки. Для внесения кормов использовали автоматические диспенсеры, срабатывающие каждые 15 мин; корм подавали с избытком. Чтобы исключить попадание зоопланктона в аппараты, использовали фильтры механической очистки с фильтрующим элементом 15 мкм. Вода в аппараты подавалась с подогревом, температура воды составляла 20 ± 0.5 °C. Для устранения ската личинок на аппаратах устанавливали фонарь из газового сита № 15, который по мере роста молоди увеличивали до № 11.

Для адекватной оценки результатов выращивания личинок судака на искусственных кормах также было проведено выращивание молоди на озерном зоопланктоне. Подготовку личинок с использованием зоопланктона осуществляли в 4 квадратных бассейнах 2×2 м с уровнем воды 0,2 м, при плотности посадки 100 личинок/л (8000 экз./бассейн). Зоопланктон ловили сачком из газового сита № 50 в озере и вносили в бассейны 4 раза в день с 9 до 21 ч с равным интервалом. Зоопланктон в бассейны вносили с избытком — в течение дня наблюдалось постоянное его присутствие в толще воды рыбоводной емкости. Вода в бассейны подавалась без подогрева, фильтр не использовался. Температура воды в период исследований равномерно повышалась от 17 до 23 °C.


Выживаемость и конечную массу личинок оценивали через 24 сут с начала питания молоди. За этот период судаки проходят наиболее

критические этапы личиночного развития (переход на внешнее питание, наполнение газом плавательного пузыря, полное расходование желточного мешка), и их смертность в дальнейшем значительно снижается.

Экспериментальные корма для диет готовили методом экструзии с последующим дроблением до размера 0,1-0,3 мм на комбикормовом предприятии ООО «Русло» (г. Санкт-Петербург). Главными компонентами для них являлись продукты микробного происхождения: гаприн от ООО «Гипробиосинтез» (г. Москва) и протелюкс от ООО «Протелюкс» (г. Санкт-Петербург), а также их гидролизаты. Кроме того, в состав кормов входили рыбная и мясная мука, пшеница молотая, физиологически активные добавки, фосфолипиды, премиксы. Корма различались типом и степенью гидролиза микробных продуктов (табл. 1).

Гидролиз гаприна и протелюкса проводили при температуре 50 °C с добавлением 1 %-ного ферментного препарата «Протосубтилин 250» (ООО ПО «Сиббиофарм», г. Бердск). Степень гидролиза (далее – СГ) определяли по процентному соотношению аминного и общего азотов стандартными методами. Молекулярно-массовое распределение белков определяли при помощи высокоэффективной жидкостной хроматографии на жидкостном хроматографе LC-10Avp («Shimadzu», Япония) с использованием колонки TSK-gel Alpha-2500 («ТОЅОН», Япония). В качестве элюента выступал 0,15 моль/дм³ раствор хлорида натрия с кислотностью 7, скорость элюента 0,8 см³/мин. Фракции белков регистрировали по оптическому поглощению на 210 нм детектором SPD-10AVP. Для калибровки задействовали набор белков с известной молекулярной массой и аминокислоты фирмы «Sigma» (США). Статистический анализ полученных данных проводили по общепринятой методике (Лакин, 1990), в прикладной программе Microsoft Excel, достоверность различий оценивали по критерию Стьюдента при уровне значимости $p \le 0.05$.

Питание личинок искусственными кормами было отмечено на 2-е сутки после начала кормления и далее было активным (см. рисунок).

Личинки судака на 2-е (слева) и 20-е (справа) сутки от начала питания; отчетливо виден искусственный корм в желудочно-кишечном тракте личинок

Лучшие результаты по росту и выживаемости были получены на корме, содержащем гаприн со степенью гидролиза 16 и 18 % — конечная средняя индивидуальная масса личинок равнялась 17.2 ± 0.7 и 16.8 ± 0.5 мг соответственно при выживаемости 10-11 % (см. табл. 1). На гаприне, не подверженном гидролизу, масса и выживаемость личинок оказались ниже — 14.6 ± 0.6 мг и 7 % соответственно.

Использование кормов с протелюксом и гидролизатами дало крайне неудовлетворительные результаты — масса личинок не превышала 10 мг, выживаемость не более 5 %. При этом даже выжившие личинки оказались нежизнеспособны и гибли в процессе их учета и пересадки.

Таблица 1
Результаты экспериментов по выращиванию личинок судака на монодиетах из искусственного корма с различными белковыми компонентами микробиологического синтеза (продолжительность 24 сут)

Компонент	Степень гидролиза	Macca	Выживаемость, %
	компонента, %	личинок, мг	
Гаприн	-	$14,6\pm0,6^{a}$	7
Гаприна гидролизат	16	$17,2\pm0,7^{b}$	11
То же	18	$16,8\pm0,5^{b}$	10
Протелюкс	-	-	0
Протелюкса гидролизат	27	$9,6\pm0,4^{c}$	3
То же	37	-	0

Примечание. Приведены среднее значение признака и его ошибка; средние массы с разными буквенными индексами имеют достоверные различия.

Гаприн и протелюкс, не подвергнутые гидролизу, и гидролизованный сверх меры (37 %) протелюкс, очевидно, не обеспечивают потребности личинок в протеине, что подтверждает исследование молекулярно-массового распределения пептидов в белковых компонентах всех кормов (табл. 2). В гидролизном гаприне на долю низкомолекулярных пептидов, доступных для переваривания ранними личинками рыб (500-700 Да), приходится от 29 до 33 %. Доля пептидов с молекулярной массой 700 Да и выше, стимулирующая развитие пищеварительной функции личинок, составляет 18-19 %, остаток приходится на аминокислоты. Напротив, в исходном гаприне и протелюксе основная доля протеина (около 90 %) представлена белками и высокомолекулярными пептидами, трудными для усвоения и переваривания у ранневозрастных личинок судака с неразвитым до конца желудочно-кишечным трактом. На пептиды с молекулярной массой от 300 до 700 Да приходится всего 2,3-2,4 %, низкое их количество отмечено и у гидролизованного протелюкса – не более 5,7 %, что может обусловливать неудовлетворительный результат выращивания личинок судака на кормах с использованием этого компонента.

Таблица 2 Молекулярно-массовое распределение пептидов в продуктах микробиосинтеза и их гидролизатах, % к общему белку

Компонент	Степень	Белки и	Низкомолекулярные		Свободные
	гидролиза	пептиды	пептиды		аминокислоты
	компонента, %	> 700 Да	500-700	300-450	140-240 Да
			Да	Да	
Гаприн	-	89,76	1,79	0,6	7,84
То же	16	18,96	29,06	0	51,98
(())	18	17,66	32,88	0	49,44
Протелюкс	-	88,34	2,27	0	9,37
То же	27	58,28	5,06	0,62	36,04
(())	37	26,79	0	0	73,21

При выращивании судака на зоопланктоне лишь примерно около трети личинок потребляли его в первые сутки кормления. Это привело к быстрому росту питающихся особей, в отличие от непитающихся. Спустя неделю с начала опыта выживаемость молоди в бассейне составила менее 30 % — в основном погибли личинки с ненаполненной кишечной трубкой. В этот же период у молоди происходит наполнение газом плавательного пузыря, которое способны осуществить лишь физиологически полноценные особи, что также послужило повышенной смертности личинок.

Начиная с 14-17 сут от начала питания наиболее крупные особи стали активно охотиться на отстающую в росте одновозрастную молодь. Доля травмированных от атак личинок-хищников жертв значительно выше доли потребленных особей. В целом к этому времени масса личинок достигает 20-30 мг, что определяет переход судаков на питание более крупными формами зоопланктона, доля которых значительно превышает мелкие формы, что способствует ускорению роста личинок.

По прошествии 24 сут с начала выращивания средняя индивидуальная масса молоди достигает около 68 мг; масса в целом имеет значительную вариабельность 40-160 мг. Выживаемость выращенных на зоопланктоне личинок находилась в диапазоне от 3,6 до 4,4 %, в среднем составив 4,2 %.

Неудовлетворительные результаты выращивания личинок судака на озерном зоопланктоне могут быть связаны с малым количеством мелких форм зоопланктеров, доступных для питания ранних личинок судака. Судак этапа перехода на внешнее питание мелок — масса порядка 0,35 мг, длина 4-5 мм. Размер рта у ранних личинок позволяет заглатывать добычу, не превышающую 0,2 мм (German experiences in..., 1996; Szkudlarek, Zakęś, 2007), в то время как в озерном зоопланктоне, используемом в опыте, доля организмов с размерами 0,25 мм и меньше составляла 1,7 % (табл. 3).

Таблица 3 Размерно-видовой состав зоопланктона оз. Суходольское на начальном этапе выращивания личинок судака (дата отбора 18.06.2021 г.)

Вид зоопланктона	L, мм	Доля, %
Rotifera – Kellicottia longispina	0,175	0,3
Rotifera – Bipalpus hudsoni; Cladocera – Chidorus sphaericus;		
Copepoda <i>Nauplii</i>	0,25	1,4
Cladocera – Eubosmina crassicornis, Bosmina longirostris	0,375	1,7
Cladocera – Bosmina longirostris, Eubosmina crassicornis, Eubosmina		
gibbera, Polyphemus pediculus; Copepoda Cyclopinae	0,5	42,1
Cladocera – Bosmina longirostris, Polyphemus pediculus, Daphnia		
cucullata; Copepoda Cyclopinae	0,625	14,6
Cladocera – Bosmina longirostris, Polyphemus pediculus, Copepoda		
Mesocyclops leuckarti	0,75	8,9
Cladocera – Polyphemus pediculus; Copepoda – Thermocyclops		
oithonoides	0,875	6,6
Cladocera – Polyphemus pediculus; Copepoda – Mesocyclops		
leuckarti,Eudiaptomus gracilis	1	14,9
Cladocera – Polyphemus pediculus	1,125	6,3
Cladocera – Polyphemus pediculus	1,25	2,3
Cladocera – Bythotrephes cederstroemi	1,625	0,3
Cladocera – <i>Leptodora kindtii</i>	2,125	0,3
Cladocera – Leptodora kindtii	3	0,3

Именно недостаток доступных кормовых объектов определил высокую смертность судака в первую неделю опыта, последующую вариабельность в размерных показателях и каннибализм. В природных условиях недостаток корма в ранний период жизни судака также может привести к каннибализму и возникновению бимодальных популяций, при этом размеры крупных сеголеток могут превышать таковые у мелких в 3 раза, что было отмечено и в настоящем исследовании.

В результате можно заключить, что одним из решений проблемы стартового кормления судака могут служить опыты гидролизной обработки белкового сырья разной природы, делающей протеиновую составляющую компонента более доступной для питания личинок с недосформированной пищеварительной функцией. Предварительные результаты подтверждают перспективность выбранного направления и определяют необходимость дальнейших исследований по разработке и применению гидролизатов высокобелковых кормовых компонентов в стартовых кормах для судака. В то же время использование природного зоопланктона для промышленного культивирования личинок судака индустриальным способом ограничено, прежде всего, сложностью обеспечения ранней молоди необходимым объемом доступных для питания кормовых объектов.

Список использованной литературы

Биологические особенности молоди сиговых и форели в условиях индустриального выращивания / Л.М. Князева, А.К. Шумилина, В.В. Костюничев [и др.] // Научные тетради ГосНИОРХ. – 2007. – 56 с.

Включение в стартовые корма для сиговых рыб (Coregonidae) бактериальной биомассы и белковых гидролизатов / И.Н. Остроумова, В.В. Костюничев, А.А. Лютиков [и др.] // Вопросы рыболовства. — 2018. — Т. 19, №1. — С. 82-98.

Королев, А.Е. Как получить икру и личинок судака в ранние сроки / А.Е. Королев, И.И. Терешенков // Рыбоводство и рыболовство. — 1995. — № 1. — С.11-12.

Лакин, Γ . Ф. Биометрия: учебное пособие для биологических специальностей вузов / Γ . Ф. Лакин. — 4-е издание, переработанное и дополненное. — М.: Высшая школа, 1990. — 351 с.

Лютиков, А.А. Культивирование ранней молоди судака (Sander lucioperca) и окуня (Perca fluviatilis) на искусственных диетах / А.А. Лютиков, А.Е. Королев, И.Н. Остроумова // Научный журнал «Известия КГТУ». -2020. -№ 56. - C. 34-47.

Остроумова, И.Н. Включение ферментолизата гаприна в стартовые корма для личинок карпа / И.Н. Остроумова, Д.С. Аршавский, Д.И. Иванов // Сборник научных трудов ГосНИОРХ. — 1986. — Вып. 257. — С. 102-106.

Effect of pre-digested protein on growth and survival of Atlantic halibut larvae (Hippoglossus hippoglossus L.) / A. Kvåle, T. Harboe, M. Epse [et al.] // Aquaculture Results. -2002. - Vol. 33. - P. 311-321.

German experiences in the propagation and rearing of fingerling pikeperch (Stizostedion lucioperca) / W. Steffens, F. Geldhauser, P. Gerstner [et al.] // Annales Zoologici Fennici. -1996.-Vol.~33.-P.~627-634.

Kolkovski, S., Tandler, A. The use of squid protein hydrolysate as a protein source in microdiet for gilthead seabream Sparus aurata larvae / S. Kolkovski, A. Tandler // Aquaculture Nutrition. – 2000. – Vol. 6. – P. 11-15.

Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages / A.P. Carvalho, R. Sar, A. O. Teles [et al.] // Aquaculture. -2004. - Vol. 234. - P. 319-333.

Szkudlarek, M., Zakęś, Z. Effect of stocking density on survival and growth performance of pikeperch, Sander lucioperca (L.), larvae under controlled conditions / M. Szkudlarek, Z. Zakęś // Aquaculture International. – 2007. – Vol. 15. – P. 67-81.