ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ РОССИЙСКАЯ АКАДЕМИЯ НАУК ЮЖНЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ АРИДНЫХ ЗОН ЮНЦ РАН ИНСТИТУТ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ И ГУМАНИТАРНЫХ ИССЛЕДОВАНИЙ ЮНЦ РАН

МАТЕРИАЛЫ НАУЧНЫХ МЕРОПРИЯТИЙ,

ПРИУРОЧЕННЫХ К 15-ЛЕТИЮ ЮЖНОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК:

международного научного форума «ДОСТИЖЕНИЯ АКАДЕМИЧЕСКОЙ НАУКИ НА ЮГЕ РОССИИ»

международной молодежной научной конференции «ОКЕАНОЛОГИЯ В XXI ВЕКЕ: СОВРЕМЕННЫЕ ФАКТЫ, МОДЕЛИ, МЕТОДЫ И СРЕДСТВА»

ПАМЯТИ ЧЛЕНА-КОРРЕСПОНДЕНТА РАН Д.Г. МАТИШОВА

всероссийской научной конференции «АКВАКУЛЬТУРА: МИРОВОЙ ОПЫТ И РОССИЙСКИЕ РАЗРАБОТКИ»

Г. РОСТОВ-НА-ДОНУ, 13-16 ДЕКАБРЯ 2017 Г.

Редколлегия:

академик Г.Г. Матишов (главный редактор), академик В.А. Бабешко, академик Ю.Ю. Балега, академик И.А. Каляев, академик В.И. Колесников, академик В.И. Лысак, академик В.И. Минкин, академик И.А. Новаков, академик Ю.С. Сидоренко, чл.-корр. РАН А.М. Никаноров, д.г.н. С.В. Бердников, д.ф.-м.н. В.В. Калинчук, д.и.н. Е.Ф. Кринко, д.б.н. Е.Н. Пономарёва, к.б.н. Н.И. Булышева, к.г.н. Е.Э. Кириллова, к.б.н. В.В. Стахеев, Р.Г. Михалюк

Материалы научных мероприятий, приуроченных к 15-летию Южного научного центра Российской академиче мии наук: Международного научного форума «Достижения академической науки на Юге России»; Международной молодежной научной конференции «Океанология в XXI веке: современные факты, модели, методы и средства» памяти члена-корреспондента РАН Д.Г. Матишова; Всероссийской научной конференции «Аквакультура: мировой опыт и российские разработки» (г. Ростов-на-Дону, 13–16 декабря 2017 г.) / [гл. ред. акад. Г.Г. Матишов]. – Ростов н/Д: Изд-во ЮНЦ РАН, 2017. – 548 с. – ISBN 978-5-4358-0165-1.

УДК 001(063)

Издание включает материалы Международного научного форума «Достижения академической науки на Юге России», Международной молодежной научной конференции «Океанология в XXI веке: современные факты, модели, методы и средства» памяти члена-корреспондента РАН Д.Г. Матишова, Всероссийской научной конференции «Аквакультура: мировой опыт и российские разработки», проходивших в период с 13 по 16 декабря 2017 г. и приуроченных к 15-летию Южного научного центра РАН.

Представлены результаты, полученные ведущими учеными научных организаций Юга России, молодыми учеными, студентами и аспирантами при выполнении фундаментальных и прикладных исследований в приоритетных областях науки с целью обеспечения комплексного решения технологических, инженерных, экологических, геополитических, экономических, социальных, гуманитарных проблем в интересах устойчивого развития южных регионов Российской Федерации.

Материалы научных мероприятий рассчитаны на широкий круг читателей, представляют интерес для ученых, преподавателей, аспирантов, студентов высших учебных заведений и всех, кто интересуется достижениями современной науки.

Издание опубликовано при финансовой поддержке Федерального агентства научных организаций.

Отдельные результаты опубликованы в рамках популяризации результатов исследований по проекту «Разработка технических средств, биотехнологий выращивания нетрадиционных видов рыб и беспозвоночных для прогресса аквакультуры Южного и Северо-Западного федеральных округов России» ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 гг.» (соглашение № 14.607.21.0163, уникальный идентификатор RFMEFI60716X0163).

ISBN 978-5-4358-0165-1 © ЮНЦ РАН, 2017

Таблица 3

ФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ СЕГОЛЕТОК РУССКОГО ОСЕТРА И ГИБРИДНЫХ ФОРМ НА ЗАКЛЮЧИТЕЛЬНОМ ЭТАПЕ ВЫРАЩИВАНИЯ

Стат. показатели	Масса рыб, г	Гемоглобин, г/л	Общий белок, г/л	Общие липиды, г/л	СОЭ, мм/час			
Сеголетки русского осетра (РО)								
M±m	73,9 ± 2,0	43,5 ± 2,0	28,2 ± 1,2	2,9 ± 0,3	3,1 ± 0,3			
σ	18,8	7,1	4,3	1,2	1,1			
CV%	22,3	16,3	15,2	39,8	34,9			
	Сеголетки сибирского (ленского) с русским осетрами (ЛО×РО)							
M±m	74,8 ± 3,6	67,3 ± 3,2	24,6 ± 1,2	2,9 ± 0,4	2,7 ± 0,2			
σ	26,1	10,9	4,1	1,2	0,8			
CV%	23,5	16,3	16,6	26,7	28,8			
Сеголетки русского с сибирским (ленским) осетрами (PO×ЛO)								
M±m	113,8 ± 3,1	48,2 ± 1,3	33,2 ± 0,7	6,0 ± 0,2	1,8 ± 0,2			
σ	13,8	8,1	2,9	0,6	0,7			
CV%	12,2	16,8	8,7	10,1	37,0			

Исследуя полученные данные, в целом можно судить о нормальном физиологическом состоянии выращенной молоди русского осетра и гибридных форм с сибирским видом. В то же время у гибрида русского на ленского осетров накопление общего сывороточного белка и липидов в крови к осени оказалось заметно выше, что предполагает более благоприятную предстоящую зимовку данного гибрида в сравнении с сеголетками русского осетра и гибридом сибирского осетра с русским видом.

ИЗУЧЕНИЕ ГЕМАТОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ PA3HOBO3PACTHЫХ ГРУПП РЕЧНОГО ОКУНЯ (*Perca fluviatilis*) B ИСКУССТВЕННЫХ УСЛОВИЯХ

Нгуен Тхи Хонг Ван, С.В. Пономарев, Ю.В. Федоровых, Б.У. Дорджиев

Астраханский государственный технический университет, г. Астрахань Hongvannguyen@mail.ru

В настоящее время большое внимание уделяется источникам диетических продуктов, в том числе и некоторым видам окуневых рыб, а именно речному окуню. Представители данного вида не только имеют большое промысловое значение, но и являются объектом рыборазведения во многих странах, таких как Австралия, Чешская республика, Нидерланды, Тунис, Украина и другие. В ходе выращивания с целью оценки физиологического состояния рыб необходимо проводить гематологические анализы. Определение оптимальных значений параметров крови для каждого вида является важным критерием при выявлении заболеваний и характеристики среды культивирования [Blaxhall, Daisley, 1973]. Исходя из этого и учитывая возрастающую роль окуня

в современной аквакультуре, нами были проведены исследования гематологических показателей речного окуня разного возраста.

Объектом исследования служили годовики, двухгодовики и трехгодовики речного окуня (*Perca fluviatilis*). Рыб выращивали в бассейне с проточной системой водообмена. Кормление осуществляли ежедневно по суточным нормам кормами, предназначенными для окунеобразных. Исследуемые особи окуня не имели видимых внешних повреждений и проявлений каких-либо заболеваний. Кровь для исследования была взята из хвостовой вены прижизненным способом [Иванова, 1983]. Основные показатели крови рыб, такие как гемоглобин, общий белок, холестерин и скорость оседания эритроцитов (СОЭ) были определены с помощью фотоэлектроколориметра. Гидрохимические показатели измерялись по общепринятым методам [Петин, Лебедева и др., 2006]. Результаты исследования были обработаны статистически и рассчитана достоверность различий по t-критерию Стьюдента.

Гидрохимические показатели в бассейне соответствовали нормам [Пономарев и Иванов, 2009], за исключением нитратного азота, который составлял 3 мг/л. Другие азотные соединения – нитритный и аммонийный азот – составили 0,02 мг/л и 0,25 мг/л соответственно. Значение активной реакции воды рН составило 7,5. Рыбоводно-биологические параметры трех возрастных групп окуня представлены в таблице 1.

Таблица 1
РЫБОВОДНО-БИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ РЕЧНОГО ОКУНЯ
РАЗНЫХ ВОЗРАСТОВ

Возрастная группа	Масса (г)	Длина абсолютная (см)	Длина до хвостового плавника (см)	Упитанность по Фультону	
Годовики	51,57 ± 3,90°	15,60 ± 0,24 ^b	13,50 ± 0,29 ^b	2,08 ± 0,11	
Двухгодовики	66,44 ± 4,35°	17,29 ± 0,31 ^b	14,62 ± 0,26 ^b	2,14 ± 0,15	
Трехгодовики	128,6 ± 14,30°	20,84 ± 0,87 ^b	18,00 ± 0,82 ^b	2,21 ± 0,19	

Примечание: а – различия достоверны при p<0,05; b – различия достоверны при p<0,01.

Особи окуня разных групп различались по средней массе и длине (различия достоверны при p<0,05 и p<0,01). Коэффициент упитанности по Фультону повышался с возрастом, однако различия по данному показателю были недостоверны (p>0,05), что говорит о равномерном увеличении массы и длины тела рыб по возрастам.

Гематологические показатели постоянно меняются в зависимости от среды обитания рыб, а также по сезонам и по возрастам. В данном исследовании значения гемоглобина разных возрастных групп рыб варьировали в пределах от $37,07 \pm 4,90$ г/л до $47,68 \pm 4,51$ г/л, что приблизительно сходно с показателями окуней естественных популяций и ранее проведённых исследований [Hryen, 2015] (табл. 2).

Таблица 2 ДИНАМИКА ГЕМАТОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ РАЗНОВОЗРАСТНЫХ ГРУПП РЕЧНОГО ОКУНЯ, ВЫРАЩЕННОГО В ИСКУССТВЕННЫХ УСЛОВИЯХ

Возрастная группа	Гемоглобин (г/л)	Общий белок (г/л)	Холестерин (ммоль/л)	СОЭ (мм/час)	Общее количе- ство эритроцитов х10 ⁴ /мм ³	МСН (пг)
1	37,07 ± 4,90	30,50 ± 2,68	1,22 ± 0,30	2,5 ± 0, 18	171,29 ± 3,29 ^b	21,78 ± 3,08
2	39,28 ± 3,54	25,05 ± 2,53 ^b	0,76 ± 0,02 ^b	2,5 ± 0,1	202,44 ± 5,29 ^b	19,51 ± 1,87
3	47,68 ± 4,51	36,19 ± 1,41 ^b	1,93 ± 0,41 ^b	2,5 ± 0,13	252,60 ± 4,71 ^b	18,84 ± 1,63

Примечание: b – различия достоверны при p<0,01.

Наиболее низкое содержание гемоглобина отмечалось у годовиков (37,07 \pm 4,90 г/л), причем его уровень постепенно повышался с возрастом. У двухгодовиков количество гемоглобина составило 39,28 \pm 3,54 г/л и у трехгодовиков – 47,68 \pm 4,51 г/л. Однако по данному показателю различия были недостоверны ни между годовиками и двухгодовиками, ни межу годовиками и трехгодовиками. Наряду с этим по общему количеству эритроцитов в 1 мм³ крови были отмечены достоверные различия при p<0,01. Наиболее высокая концентрация эритроцитов отмечалась у трехгодовиков – 252,60 \pm 4,71×10 4 кл./мм³, затем у двухгодовиков –

 $202,44 \pm 5,29 \times 10^4$ кл./мм³и у годовиков 171,29 $\pm 3,29 \times 10^4$ кл./мм³. Такой результат объясняется тем, что с возрастом активность рыбы как хищника увеличивается [Patrick, Konrad, Robert, 2015], что требует большого резервного количества эритроцитов в крови. В среднем содержании гемоглобина в эритроците (МСН) наблюдалась обратная картина: самое высокое значение было отмечено у годовиков $21,78 \pm 3,08$ пг, а самое низкое – у трехгодовиков – $18,84 \pm 1,63$ пг. Статистические различия по данному показателю были недостоверны.

Концентрация общего белка в сыворотке крови отражает состояние белкового обмена и тесно связана с кормлением рыб. В искусственных условиях с постоянным кормлением значения данного показателя были стабильно высокими. Наиболее высокое содержание общего белка было отмечено у группы трехгодовиков (36,19 \pm 1,41 г/л). Не было достоверных различий в концентрациях общего белка между годовиками и двухгодовиками; между годовиками и трехгодовиками, однако различия были достоверны между двухгодовиками и трехгодовиками (25,05 \pm 2,53 против 36,19 \pm 1,41). Полученные данные, возможно, предполагают то, что такой показатель, как общий белок не подвергается влиянию возраста, а главным образом зависит от состояния питания рыб.

Таким образом, была установлена частичная зависимость некоторых гематологических показателей речного окуня от возраста рыб. Содержание гемоглобина, общее количество эритроцитов в 1 мм³ крови повышаются с возрастом, что связано с увеличением активности данного вида как хищника.

СПИСОК ЛИТЕРАТУРЫ

Иванова Н.Т. Атлас клеток крови рыб (сравнительная морфология и классификация форменных элементов крови рыб). М.: Легкая и пищевая промышленность, 1983. 184 с.

Петин А.Н., Лебедева М.Г., Крымская О.В. Анализ и оценка качества поверхностных вод. Белгород: Изд-во БелГУ. 2006. 252 с.

Пономарев С.В., Иванов Д.И. Осетроводство на интенсивной основе. Учебник. М.: Колос, 2009. 312 с.

Blaxhall, P.C. Daisley, K.W. Routine haematological methods for use with fish blood // Journal of Fish Biology. 5. 1973. P. 771–781.

Нгуен Тхи Хонг Ван. Гематологические показатели крови европейского окуня в различных условиях. Астрахань: Изд-во АГТУ, 2015. 12 с.

Patrick Kestemont, Konrad Dabrowski, and Robert C. Summer felt. Biology and Culture of Percid Fishes: Principles and Practices. Dordrecht (The Netherlands); New York: Springer (eb), 2015.

ОПЫТ АДАПТАЦИИ И ПОДГОТОВКИ НАСТОЯЩИХ ТЮЛЕНЕЙ К ПРОВЕДЕНИЮ ЭКСПЕРИМЕНТАЛЬНЫХ РАБОТ НА АКВАКОМПЛЕКСАХ ММБИ КНЦ РАН

М.В. Пахомов, А.А. Зайцев, А.Р. Трошичев, С.Ю. Степанов, Ю.В. Литвинов, П.А. Заволока

Мурманский морской биологический институт КНЦ РАН, г. Мурманск

В настоящее время исследования морских млекопитающих в основном ведутся либо в естественной среде обитания, где изучаются дикие животные, либо в океанариумах, где животных приручают и обучают выполнению команд.

Изучение морских млекопитающих в естественных условиях позволяет установить маршруты миграции, места лёжек, особенности пищедобывательного, социального и репродуктивного поведения животных. Возможен отбор биологических жидкостей и тканей для исследования физиологических характеристик животных. Но в естественных условиях фактически невозможно изучать сенсорные и когнитивные способности животных. Подобные исследования связаны со значительными трудностями: необходимо организовывать дорогостоящие