УДК - 597.5831

Сергеева С.Г., Корниенко Г.Г., Самарская Е.А.

(Азовский научно-исследовательский институт рыбного хозяйства))

ПАТОЛОГИИ ГОНАД СУДАКА ОБЫКНОВЕННОГО (SANDER LUCIOPERCA L.) В АЗОВСКОМ МОРЕ

Ключевые слова: судак, гонада, стадия зрелости, репродуктивная система

Введение

Резкие изменения экологических условий среды обитания неизбежно приводят к негативному ответу популяций гидробионтов, в том числе рыб. Одним их таких ответов являются патологические изменения в репродуктивной системе рыб. В 70-80 годы в период резкого осолонения Азовского моря и, соответственно, ухудшения условий размножения, количество самок судака с нарушениями репродуктивного потенциала составляло до 40 % [7]. В 90-х годах, когда экосистема Азовского моря испытывала значительный антропогенный пресс, в популяции судака отмечались особи с низкими показателями физиологического состояния [4], сниженным темпом роста и ухудшением качества питания [1]. Однако, несмотря на неудовлетворительное физиологическое состояние части производителей судака, воспроизводительный потенциал сохранялся на достаточной высоком уровне.

Целью работы явилось выявление патологических изменений в развитии гонад азовской популяции судака в современных условиях обитания.

Методика исследования

Материал для исследований отбирали в Азовском море во время нерестовых миграций, нагула и зимовки. Взятых для анализа производителей судака измеряли, определяли пол, оценивали общую экстерьерную характеристику.

Методика проведения гистологических исследований подробно описана в методическом руководстве «Физиолого-биохимические и генетические исследования ихтиофауны Азово-Черноморского бассейна» (2005) [6].

Результаты исследования

Ежегодный мониторинг функционального состояния репродуктивной системы судака позволил выявить различные типы нарушений процессов развития гонад, которые отражают влияние неблагоприятных воздействий окружающей среды обитания.

После нереста гонады судака переходят в стадию зрелости VI-II, а в период летнего нагула - во II. У самок судака со второй стадией зрелости яичники в норме представлены в виде парных трубок почти равного диаметра на всем протяжении. Они прозрачные, бледно-розового цвета. Гистологически выявляется весь комплекс ооцитов I стадии и ооциты фазы однослойного фолликула. Для азовского судака эта стадия продолжается до середины-конца августа. Тип икрометания у судака единовременный, поэтому легко различить все, и в том числе конечные фазы резорбции, связанные с последовательными изменениями опустевшего фолликула или ооцитов различных фаз зрелости в процессе де-

В середине 90-х годов в летний период в Азовском море у 50 % самок в яичниках, находящихся на второй стадии зрелости, обнаруживались единичные резорбированные ооциты двух типов: 1) крупные округлые или овальные образования, заполненные жиром, с плавающей в ней глыбкой уплотненного желтка; 2) мелкие (диаметром 150 мкм) круглые непрозрачные образования ярко желтого цвета, заполненные плотным однородным желтком. По всей вероятности, большая часть таких образований в яичниках самок судака представляет собой массу из резорбированных опустевших фолликулов и икринок. Как показано на примере окуня, плотвы, леща и других видов рыб с синхронным ростом ооцитов, развитие половых продуктов новой генерации наступает, как правило, после завершения всех резорбционных процессов в яичниках отнерестившихся самок [5]. Задержка резорбционных процессов у судака была связана с неблагоприятными условиями обитания особей, вследствие чего увеличивалась длительность прохождения отдельных стадий развития половых желез. Резорбционные процессы, вызванные воздействием различных факторов, приводят к пропуску последующего нерестового процесса и связаны, таким образом, с длительной задержкой в развитии половых клеток.

Осенью самки судака имеют III стадию зрелости гонад. Через оболочку яичников просматриваются икринки, имеющие многогранную форму и желтовато-белый цвет. Среди крупных икринок разбросаны в виде мелких крупинок и точек более мелкие икринки. Гистологически определяется весь комплекс ооцитов яичника II стадии зрелости наряду с ооцитами фазы первоначального накопления жира. Желток в виде гранул округлой формы. Много мелких жировых капель. Продолжительность III стадии для азовского судака с середины-конца августа до середины-конца октября.

Визуально у некоторых рыб с гонадами в III стадии зрелости выявлялась патология трех типов: 1) среди нормально развивающихся ооцитов отмечены единичные резорбированные икринки, непрозрачные, светло-коричневого цвета, оставшиеся после нереста; 2) большое количество резорбированных ооцитов, расположенных по всей гонаде; они коричневатого цвета, непрозрачные, довольно крупные; 3) тоталь-

ная резорбция икры предыдущей генерации; в середине гонады проходит толстый пучок соединительно-тканных волокон, заполненных резорбирующими ооцитами. Эти рыбы не отнерестились, ооциты новой генерации отстают в развитии и достигают фазы однослойного фолликула.

Наличие рыб с патологией гонад в III стадии зрелости, когда в норме в осенний период все резорбционные процессы уже должны быть завершены, свидетельствовали о глубоких нарушениях, происходящих в организме рыб. У таких самок судака происходила задержка в развитии половых продуктов, снижалась абсолютная плодовитость и ухудшалось рыбоводное качество икры.

На рисунке 1 представлены срезы гонад самок судака с нормально развивающимися ооцитами (A), с ооцитами в начальных стадиях резорбции (Б), с ооцитами с текущей резорбцией (В) и остаточная резорбция ооцитов прошлого года (Г).

Позитивные изменения, произошедшие с экосистемой Азовского моря с начала 2000-х годов (уменьшение загрязнения), определили улучшение физиологического

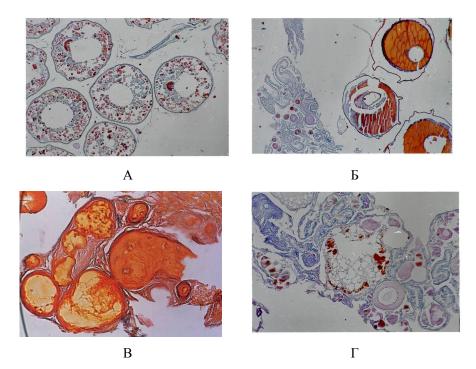


Рисунок 1 – Яичник судака. Увеличение 10×8× А - Норма, IV стадия зрелости яичника; Б - Начальная резорбция; В - Текущая резорбция; Γ - Остаточная резорбция.

состояния рыб. Особи судака с патологиями развития гонад практически не отмечались. Высокая трофическая обеспеченность моря обусловила высокий темп роста, созревание и подготовленность к зимовке и нерестовым миграциям рыб. Однако естественное пополнение и искусственное воспроизводство судака в настоящее время находятся на катастрофически низком уровне. Крайне неудовлетворительные условия для воспроизводства (отсутствие нерестилищ, недостаточное количество производителей) отражаются на характере пополнения популяции молодью [3]. За последние три года в обследуемых выборках судака наблюдались производители с различными нарушениями в развитии гонад.

В период нерестовой миграции в апре-

ле 2009 г. у некоторых из обследованных самок выявлены отклонения от нормального морфологического строения гонад. На гистологических препаратах отмечались вакуолизированные ооциты, имеющие расширенную студенистую оболочку, фолликулярный эпителий вздувшийся, кортикальные гранулы сдвинуты к оболочке, что свидетельствует о наличии воспалительного процесса. Цитоплазма плотная, гомогенная, отмечены отдельные жировые капли. Такое состояние характерно для начальных стадий резорбции половых клеток.

Среди обследованных рыб выявлена особь с низким значением гонадосоматического индекса – 0.5 %, масса гонады составляла всего 4.8 г. (рис. 2 Б). У этой самки отмечалось большое количество мезен-

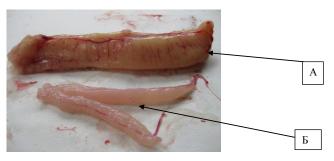


Рисунок 2 - Гонады судака. А – нормально созревающие гонады, ГСИ - 9.1 %. Б- задержка в созревании, ГСИ - 0.5 %

териального жира, печень была рыхлая, гиперимированная. Индекс печени у этой самки также низкий - 1.4 % против 2.4 % у рыб с нормально развивающимися гонадами. При гистологическом исследовании яичников отмечена резорбция икры генерации прошлого года, представляющая собой скопление жировых капель, покрытое утолщенной оболочкой. Клетки новой генерации в основном представлены ооцитами протоплазматического роста, единично встречаются ооциты трофоплазматического роста (10 %), отмечались ооциты на стадии трофоплазматического роста с текущей резорбцией (10 %).

В 90-х годах распространенной патологией созревания самок было недоразвитие гонад у старшевозрастных рыб. В 2010 году среди обследованных рыб отмечена особь возрастом 2 года, длиной 310 мм и массой 290 г, у которой отмечалось раннее созревание половых желез. Гонадосоматический индекс этой самки равен 4.36 %, что в 2.5 раза меньше среднего значе-

ния этого показателя для нормально созревающих рыб. Сниженное по сравнению с нормой для этого периода жизненного цикла содержание белка в сыворотке крови и холестерина (предшественника половых гормонов), а также белка в икре свидетельствовали об отклонениях в развитии гонад. Ооциты в гонадах этой самки были мелкие, их диаметр варьировал от 0.4. до 0.8 мм, модальная группа – 0.7 мм (рис. 3 А). Количество икринок в одном грамме составило 2520 шт., что в полтора раза больше, чем у впервые и повторно созревающих рыб трех-четырехлетнего возраста. При массе гонад 12.34 г (гонадосоматический индекс 4.36 %) плодовитость этой рано созревшей самки составила 310968 шт. икринок. Гистологический анализ показал, что в яичнике на яйценосных пластинах около оболочки гонады расположены клетки молодой генерации - оогонии и ооциты протоплазматического роста. Помимо молодых клеток наблюдались ооциты конца трофоплазматического роста. Однако строение этих клеток имеет отклонения от нормы: плазмолемма была сильно набухшей (утолщенной), отдельные зерна желтка сливались в общую аморфную массу, заполняющую весь объем цитоплазмы, по цитоплазме были разбросаны отдельные мелкие капли жира. Подобная морфология свидетельствует о развитии процесса резорбции ооцитов. Вероятно, у данной особи произошел гормональный сбой в организме, приведший к раннему половому созреванию. Судя по уровню физиолого-биохимических показателей (низкое содержание жира, холестерина, белка) эта самка не была готова к нересту, поэтому естественным процессом в данной ситуации является резорбция зрелой генерации ооцитов, что мы и наблюдали при микроскопировании гистологических препаратов гонады.

У самок судака, отловленных в мае 2010 г. в Азовском море в районе п. Ачуево в посленерестовый период, гонады были в стадии зрелости VI-II. Отмечены особи, у которых на гистологических препаратах количество невыметанных зрелых икринок в поле зрения микроскопа превышало число опустевших фолликулов. На этих участках гонады было отмечено разрастание соединительной ткани. Такая патология гонад часто наблюдалась в середине 90-х годов в период интенсивного загрязнения Азовского моря [2]. В дальнейшем у таких рыб резорбция невыметанных половых продуктов затягивалась на значитель-

ный срок, что приводило к задержке развития половых клеток новой генерации.

Заключение

Проведенные исследования показали, что в современный период в популяции азовского судака выявляются нарушения в развитии гонад, выраженные в разной степени. В связи с катастрофическим уменьшением численности производителей судака не представляется возможным определить процент встречаемости патологий гонад и провести анализ причин, вызвавших эти процессы. Из числа обследованных особей судака за последние два года 20 % рыб имели патологии гонад. Однако, по аналогии с осетровыми рыбами, можно полагать, что это результат отсутствия условий для нереста и воздействие загрязнения среды обитания. В период значительного антропогенного пресса (1992-1996 гг.) в Азовском море после окончания нерестового периода наблюдали значительное (до 30 % от нерестовой популяции) число рыб, резорбирующих половые клетки, что свидетельствует об отсутствии вымета икры.

Таким образом, наблюдения за состоянием гонад судака позволили выявить несколько типов нарушений созревания половых продуктов, к числу которых относятся: резорбция зрелой икры и последующий пропуск нереста; частичная резорбция зрелой икры, приводящая к снижению плодовитости самок; недоразвитие гонад у старшевозрастных рыб; раннее созревание гонад у судака в возрасте 2 лет.

Резюме: представлены данные о состоянии репродуктивной системы самок азовского судака (Sander lucioperca L.). Показано, что в настоящее время у 20 % обследо-ванных рыб отмечены нарушения в развитии гонад. Эти процессы, наряду с резким сокращением эффективной численности популяции судака, приводят к снижению пополнения популяции молодью.

SUMMARY

Data are presented of the reproductive system of the Azov Sea pike perch Sander lucioperca L. females. Abnormal development of gonads has been observed in 20% of the fish checked up. These processes along with the decreasing abundance of pike perch population have resulted in poor replenishment of the stock with the young fish.

Keywords: pike perch, gonad, maturation, reproductive system

Литература

- 1. Белоусов В.Н. Динамика популяции азовского судака под влиянием антропогенных, биотических и абиотических факторов// Основные проблемы рыбн. хоз. и охр. водоемов Аз.-Черн. бассейна: Сб. научных тр. АзНИИРХ (1998-1999 гг.). Ростов-на-Дону, 2000. С. 88-96.
- 2. Корниенко Г.Г., Кожин А.А., Воловик С.П., Макаров Э.В. Экологические аспекты репродукции. Ростов-на-Дону: Эверест, 1998. – 238 с. 3. Макаров Э.В., Семенов А.Д. Экологические
- 3. Макаров Э.В., Семенов А.Д. Экологические аспекты проблемы развития рыбного хозяйства в Азовском бассейне// Основные проблемы рыбного
- хозяйства и охраны рыбохозяйственных водоемов Азовского бассейна/ Ростов-на-Дону: Полиграф, 1996. – C. 6-20.
- Сергеева С.Г. Эколого-биохимические параметры состояния производителей судака в Азово-Кубанском районе. В сб.: Экологические проблемы Кубани. Краснодар, 2001. С. 209-215.
- 5. Трусов В.З. Годичный цикл яичников донского судака и особенности от-дельных моментов цикла у судака других водоемов/ Труды лаборатории основ рыбоводства. Под ред. проф. Н.Л. Гербильского. Л., 1949. Т. 2. С. 121-147

6. Физиолого-биохимические и генетические исследования ихтиофауны Азо-во-Черноморского бассейна/ Методическое руководство. Ростов-на-Дону: Эве-рест, 2005. 100 с.

7. Шуватова Т.Ф., Аведикова Т.М. Физиологи-

ческое состояние судака и леща при меняющемся режиме Азовского моря// Экологическая физиология и биохимия рыб. Мат. VI всес. конф. по экологической физиологии и биохим. рыб. Вильнюс, 1985. С.274 – 275.

Контактная информации об авторах для переписки

Сергеева Светлана Григорьевна – кандидат биологических наук, вед. н. с. от-дела генетико-биохимического мониторинга Φ ГУП «АзНИИРХ». 344002, г. Ростов-на-Дону, ул. Береговая, 21В, тел. 8-863-262-56-45, E-mail: sgs1301@yandex.ru

Корниенко Галина Гавриловна – доктор биологических наук, профессор, заве-дующая отделом генетико-биохимического мониторинга ФГУП «АзНИИРХ». 344002, г. Ростовна-Дону, ул. Береговая, 21В, тел. 8-863-262-56-45, E-mail: ogbmkorn@yandex.ru

Самарская Екатерина Алексеевна – м.н.с. отдела генетико-биохимического мониторинга ФГУП «АзНИИРХ». 344002, г. Ростов-на-Дону, ул. Береговая, 21В,

тел. 8-863-262-56-45, E-mail: samarskaja.katya@yandex.ru

УДК 636.4.082 **Острикова Э. Е.** (Донской ГАУ)

ВЛИЯНИЕ ПРОБИОТИКОВ И БИОСТИМУЛЯТОРОВ НА ВОСПРОИЗВОДИТЕЛЬНУЮ СПОСОБНОСТЬ РЕМОНТНЫХ СВИНОК

Ключевые слова: биостимуляторы, пробиотики, плодовитость, крупноплодность, свиньи

Введение

Комплексный подход к решению проблемы интенсификации свиноводства, составная часть которой - воспроизводство стада, сохранение приплода и обеспечение его развития, обусловил расширение исследовательских работ, которые направлены на дальнейшее изучение болезней молодняка, особенностей развития их пищеварения, изыскание эффективных мер профилактики и лечения, кормов и кормовых добавок для стимулирования роста и развития животных.

Материал и методика исследований

Целью данной работы явилось изучение влияния пробиотиков и биостимуляторов на воспроизводительные качества свиней. Опыты проводились с 2004 по 2009 года в условиях племзавода «Гашунский» Ремонтненского района, ЗАО «имени Ленина» Цимлянского района, КФХ «Геркулес» Матвеево-Курганского района Ростовской области на свиньях степного мясного ти-

па. Для проведения опыта было отобрано в каждом хозяйстве по 120 голов свиней в возрасте 2 месяцев и живой массой 18-20 кг. Животных отбирали по принципу аналогов с учетом происхождения, возраста, живой массы, пола и развития.

Животным согласно схеме опыта вводили следующие препараты:

- СТЭМБ- по 0,1 мл подкожно, трехкратно через 7 суток;
- СИТР по $0,1\,$ мл/кг подкожно, трех-кратно через 7 суток;
- Проваген по 7-10 г на голову ежемесячно в течение 5 дней;

-Ветом 1.1. — по 50 мг/кг 1 раз в день в течение 30 дней, затем интервал 30 дней.

Пятая группа служила контролем. Препараты применяли до достижения животными живой массы 100 кг.

При достижении свинками живой массы 120-130 кг, пришедших в охоту осеменяли. У опытных животных изучали следующие показатели воспроизводительных ка-