МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный аграрный университет»

ИНТЕЛЛЕКТУАЛЬНЫЙ ПОТЕНЦИАЛ МОЛОДЫХ УЧЕНЫХ КАК ДРАЙВЕР РАЗВИТИЯ АПК

Материалы международной научно-практической конференции молодых ученых и обучающихся

(24-26 марта 2021 года)

Часть І

Интеллектуальный потенциал молодых ученых как драйвер развития АПК: материалы международной научно-практической конференции молодых ученых и обучающихся. – Ч. І / СПбГАУ. – СПб., 2021.

(Санкт-Петербург-Пушкин, 24-26 марта 2021 года)

В материалах международной научно-практической конференции молодых учёных и обучающихся рассматриваются проблемы развития аграрной науки, пути их решения. Представленные теоретические обобщения и практический опыт работы в современных условиях способствуют дальнейшему повышению эффективности научных исследований и уровня научного обеспечения развития АПК.

Главный редактор доктор ветеринарных наук *В.Ю. Морозов*

Заместитель гл. редактора доктор сельскохозяйственных наук $H.A.\$ *Цыганова*

Редакционная коллегия:

канд. философ. наук **Р.Р. Мазина**, д-р с.-х. наук **А.Г. Бычаев**, канд. экон. наук **М.В. Денисов**, канд. экон. наук **Ю.Г. Амагаева**, канд. с.-х. наук **В.М. Кондратьев**, канд. с.-х. наук **Т.В. Степанова**, канд. биол. наук **Л.Е. Колесников**, канд. с.-х. наук **В.М. Худякова**, канд. техн. наук **Е.Л. Уварова**, канд. техн. наук **В.А. Ружьев**

На диаграмме видно, что к зоне A относятся признаки $D_1 - D_5$ (табл.), это значит, что предприятию следует принять меры по устранению этих дефектов, ведь их суммарное количество брака 76%. К зоне относятся признаки $D_6 - D_7$ (табл.), такие дефекты в сумме дают 15% брака. К зоне C относится признак D_8 (табл.), его доля в общей сумме дефектов составляет 9%.

Таким образом, проанализировав данные из диаграммы Парето (рис.), можно сделать вывод, что при устранении дефектов зоны A, а именно: кисловатый или затхлый запах; отсутствие корочки подсыхания на охлажденной тушке; деформация тушки; загрязнение поверхности тушки; ослизнение поверхности тушки — можно уменьшить потери производимой продукции.

Выполнение рекомендаций по предотвращению появления дефектов и своевременное устранение нарушений приводит к тому, что качественный выход производства увеличивается; сокращаются потери мясной продукции; сокращение использования дополнительных площадей для устранения дефектов; сокращение экономических потерь и затрат человеческого труда.

Литература

- 1. Самарская В.С., Федорович Н.Н. Применение диаграммы Парето для анализа дефектов тушек мяса птицы. Краснодар: КГТУ, 2019.
- 2. Гущин В.В., Маковеев И.И., Брагин В.С., Маковеева А.Л. Дефекты тушек птицы и их влияние на качество продукции // Птицеводство. 2016. № 7. С. 37-40

УДК 639.3.032

Студент **В.А. МОРОЗОВА** Канд. биол. наук **Т.А. НЕЧАЕВА** (ФГБОУ ВО СП6ГАУ)

БИОТЕХНИКА ВОСПРОИЗВОДСТВА АТЛАНТИЧЕСКОГО ЛОСОСЯ НА ЛУЖСКОМ ПРОИЗВОДСТВЕННО-ЭКСПЕРИМЕНТАЛЬНОМ ЛОСОСЕВОМ ЗАВОДЕ

Атлантический лосось (семга) р. Луги относится к популяции балтийского лосося, именно с него 150 лет назад началось воспроизведение ценных видов рыб. Впервые воспроизводством семги и кумжи на р. Луга занялся Лужский филиал Никольского завода, но его работа была приостановлена в 1912 году. После оценки ущерба, нанесенного рыбным запасам из-за строительства ЛАЭС, в 1989 году была возобновлена деятельность по воспроизводству ценных видов рыб. На момент начала деятельности завода, от естественных запасов семги и кумжи почти ничего не осталось, и они потеряли свое промысловое значение. Первые несколько лет для восстановления популяции лососевых. Лужский производственно-экспериментальный лососевый завод (ЛПЭЗ) снабжали половыми продуктами заводы, располагавшиеся на р. Нева и р. Нарва. С этого началось восстановление популяции. В целях обеспечения загрузки завода было решено создать ремонтно-маточное стадо данных рыб, которое до 70% обеспечивало завод половыми продуктами, что позволило бы повысить промысловый возврат рыбы [2, 3].

В настоящее время в естественные водоемы предприятие выпускает годовиков семги, мальков и сеголеток кумжи, а также молодь миноги. На данный момент популяция данных видов рыб значительно возросла и основной проблемой воспроизводства являются браконьерство, промышленное строительство и загрязнение реки.

Целью данной работы было изучение биотехники атлантического лосося на ЛВЭЗ, которая включает в себя выдерживание производителей, получение половых продуктов, инкубация и выращивание мальков.

Основную роль при воспроизводстве рыбы на Лужском рыбоводном заводе играет собственное ремонтно-маточное стадо, которое дает основную долю половых продуктов. Наряду с этим, ежегодно идет отлов диких производителей на реке Луга для поддержания генетического разнообразия. Отлов производителей осуществляется в сентябре-октябре и после бонитировки они отправляются на выдерживание, которое длится до созревания.

Во время выдерживания рыба не питается. При этом ведется ежедневный контроль за состоянием рыбы, и в случае заболевания или каких-либо травм осуществляются лечебнопрофилактические мероприятия. Проводится еженедельный просмотр производителей на созревание [2].

Когда рыба готова к нересту, половые продукты получают методом сцеживания, осеменение проводят сухим способом. Икру и сперму смешивают в эмалированных тазах в соотношении 0,5л:4л:6см³, где 0,5 л – это количество воды, 4 л – количество икры и 6 см³ – количество спермы [2]. Затем тазы ставят под проточную воду для набухания, которое длится приблизительно 6 часов. После этого половые продукты помещают в инкубационные аппараты. После вылупления личинок процесс подращивания и выращивания длится до достижения рыбы возраста годовика, и после бонитировки часть остается для формирования ремонтно-маточного стада, а часть выпускается в р. Лугу. Кормление личинок и мальков проводится комбикормами, но также может включать в себя живой корм. Количество корма зависит от веса и размера рыбы, а также от температуры воды.

Данные по воспроизводству молоди на Лужском рыбзаводе представлены в таблице 1.

Таблица 1. Показатели выполнения работ по искусственному воспроизводству водных биоресурсов ЛПЭЗ

Вид рыбы	Возраст	Кол-во икры, млн. шт.	Выпуск водных биоресурсов в естественную среду за 2019 год					
			план, млн. шт.	факт., млн. шт.	из них по госзаданию факт. млн.шт.	% выполнения	навеска факт, г	
Семга	Годовики	0,3	0,100	0,134665	0,100	100	18,0-21,0	
Кумжа	Годовики	0,1	0,02	0,054566	0,02	100	10,2-14,1	
Минога	Личинки	6,6	2,25	5,614936	2,25	100	0,0005	
Всего	Годовики и личинки	7,0	2,370	5,614936	2,370	100		
По видам: Лососевые	Годовики	0,4	0,120	0,189231	0,120	100		
Минога	Личинки	6,6	2,25	5,425705	2,25	100		

Как видно изданных таблицы 1, Лужский рыбоводный завод выполняет план по выпуску молоди в естественные водоемы, при этом в р. Луга было выпущено годовиков атлантического лосося в 1,3 раза больше, чем запланировано.

Характеристика деятельности Лужского рыбзвода представлена в таблице 2.

Таблица 2. Характеристика деятельности Лужского рыбзвода по выращиванию атлантического лосося (семги)

		Лужский ПЭЛЗ			
Наименование показателей	Ед. измерения	Лосось атлантический (сёмга)			
паименование показателеи		Генерации			
		2017 г.	2018 г.	2019 г.	
Отловлено производителей:	шт.	34	82	13	
в том числе самок	шт.	6	52	6	
Количество использованных самок	шт.	5	44	5	
Рабочая плодовитость	тыс. шт.	5,0	5,0	5,0	
Степень оплодотворения	%	90,0	89,9	90,0	

Продолжение таблицы 2

			прооблжен	ие таолицы 2
Всего получено икры	тыс. шт.	26,90	199,515	20,323
в том числе собственной		26,90	199,515	20,323
завезено с других заводов		-	-	410,0
Плотность посадки	тыс. шт./м2	6,05	11,2	6,0
Время инкубации	сутки, градусодни	307,47	313,9	
Выживаемость за период инкубации	тыс. шт, %	12,87 47,6	119,339 66,6	
Получено однодневных личинок	тыс. шт.	12,87	119,339	
Выживаемость за период выдерживания	тыс. шт, %	11,64 90,4	103,531 86,8	
Выживаемость за период подращивания	тыс. шт, %	11,376 97,7	81,966 79,2	
Посажено мальков на 1-летнее выращивание	тыс. шт.	11,376	81,966	
Средняя масса мальков при посадке	Γ	1,1	1,0	
Плотность посадки мальков	тыс. шт./м ²	0,9	0,8	
Выживаемость за 1-летнее выращивание	тыс. шт, %	9,102 80,0	8,152 10,3	
Получено сеголеток	тыс. шт.	9,102**	8,152	
Посажено на 1-е зимнее выращивание	тыс. шт.	9,102	8,152	
Количество использованных бассейнов	шт.	3/12		
Плотность посадки	тыс. шт./м ²	0,9		
Выживаемость за 1-е зимнее	тыс. шт,	8,300		
выращивание	%	91,2		
Получено годовиков	тыс. шт.	8,300		
Средняя штучная масса	Γ	18,0		
Выпущено годовиков в естественные водоемы	тыс. шт.	7,300		
Средняя штучная масса выпущенной молоди	Γ	19,0		

Степень оплодотворения икры на Лужском рыбзаводе соответствует нормативам, принятым для лососевых заводов Ленинградской области. Но выживаемость в период (66,6-47,6% при нормативе 90%). Проведенные специалистами инкубации ниже патологоанатомические и токсикологические исследования производителей атлантического лосося, отловленных в реке Луга, показало, что рыбы поражены хроническим токсикозом с повреждением жаберной ткани и паренхиматозных органов. Химико-аналитическое исследование мышечной ткани производителей выявило наличие таких высокотоксичных тяжелых металлов, как кадмий и свинец. Эти металлы были обнаружены также в икре, полученной от диких производителей. При этом содержание кадмия было выше, чем в мышечной ткани. Загрязнения попадают в водоисточник аэрогенным путем, при этом содержание тяжелых металлов в атмосферных осадках было крайне высоким и достигало по некоторым из них десятков ПДК и больше (свинец – 28). Следовательно, возрастало их содержание и в воде [1]. Предполагается, что высокие отходы инкубационной икры могут быть связаны именно с токсическим поражением. Выживаемость за период выдерживания и подращивания у молоди соответствует и даже превышает нормативы ВНИРО (2015). Выживаемость в период выращивания соответствует норме.

Масса годовиков при выпуске составляет 19.0 г, при нормативе 9.0-18.0 г. Это свидетельствует о благополучном физиологическом состоянии покатников атлантического лосося, выпускаемых Лужским рыбзаводом. Данные по выпуску молоди лосося в 2019 представлены в таблице 3.

Таблица 3. Выпуск молоди атлантического лосося Лужским рыбзаводом в 2019 г.

Вид	Возраст	Количество, тыс. шт. в том числе всего покатников (для лососевых)		Средний вес, г	Время выпуска (передачи)	Место выпуска молоди или организация- получатель
Лосось атлантический (семга)	годовики госзадание	100,000	100,000	18,30- 21,00	апрель	р. Луга
	годовики компенсац.	34,665	34,665	18,00	май	р. Луга

Выпуск молоди семги повышается за счет компенсационных выпусков.

Проведенные исследования позволяют сделать вывод об эффективности биотехники воспроизводства атлантического лосося на Лужском рыбзаводе. Это подчеркивает важность содержания на предприятии собственного ремонтно-маточного стада и работы с ним. В то же время из-за опасности токсического поражения необходим контроль физиологического состояния производителей и качества воды, поступающей на завод.

Литература

- 1. **Гарлов П.Е., Аршаница Н.М., Стекольников А.А., Гребцов М.Р.** Состояние и сохранение популяций лососевых и сиговых рыб в водоемах Северо-Запада России // Международный вестник ветеринарии. 2019. № 3. С. 66 72.
- 2. Гарлов П.Е., Нечаева Т.А., Рыбалова Н.Б. Искусственное воспроизводство популяции рыб. Полносистемное исследование: учебное пособие. СПб.: Лань, 2020. 328 с.
- 3. Казаков Р.В. Атлантический лосось: монография. СПб.: Наука, 1998. 575 с.

УДК 636.5.033

Студент **Е.С. МУРЗИНА** Канд. с.-х. наук Л**.Т. ВАСИЛЬЕВА** (ФГБОУ ВО СП6ГАУ)

ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ РЕМОНТНОГО МОЛОДНЯКА КРОССОВ ROSS 308 И СОВВ 500 В УСЛОВИЯХ АО «ПТИЦЕФАБРИКА РОСКАР»

При производстве бройлеров огромное значение играет выбор кросса и создание соответствующих условий для проявления генетического потенциала в условиях конкретного хозяйства. Практика показывает, что немаловажное значение в использовании кросса играет качество родительского стада, которое зависит не только от условий кормления и содержания, но и значительно от качества выращенного ремонтного молодняка. Кроме того, следует обратить внимание на то, что молодняк родительских форм используемого кросса при выращивании является одним из первых показателей проявления генетического потенциала кросса в условиях данного хозяйства. Поэтому при выращивании ремонтного молодняка родительского стада стремятся создать все необходимые условия для получения качественного молодняка. Особенно это становится актуальным при использовании в хозяйстве двух кроссов. Поэтому работы, посвященные оценке качества ремонтного молодняка каждого кросса и определения их эффективности в условиях данного хозяйства, являются не только актуальными, но и имеют высокую практическую значимость [1, 2, 3].

Целью исследования явился сравнительный анализ эффективности выращивания ремонтного молодняка родительского стада кроссов Cobb 500 и Ross 308 в условиях АО «Птицефабрика Роскар».