Министерство природных ресурсов и экологии Российской Федерации

ТРУДЫ

КРОНОЦКОГО ГОСУДАРСТВЕННОГО ПРИРОДНОГО БИОСФЕРНОГО ЗАПОВЕДНИКА

Выпуск 2

Издательство «Камчатпресс» Петропавловск-Камчатский 2012

листьев (прикорневых, стеблевых или прицветных), общими размерами или длиной цветоносов, формой и вкусом плодов.

Следует отметить, что спектр гибридов и морфологических отклонений растений Восточной Камчатки (в пределах заповедника) довольно существенно отличается от Южной, Центральной и Северной Камчатки. Ещё в большей степени эти отличия выражены на прилегающих к Камчатке территориях (на Командорских и Курильских островах, в Северной Корякии).

Литература

Баркалов В. Ю. Colchicaceae. // Сосудистые растения советского Дальнего Востока, 2. — Л. : Наука, 1987. — С. 346–359.

Воробьёв Д. П. Salicaceae // Определитель сосудистых растений Камчатской области. — М.: Наука, 1981. — С. 154–162.

Гуреева И. И. О видах родства *Athyrium filix-femina* (L.) Roth в Южной Сибири // Сист. зам. Герб. Том. ун-та. 2000. № 92. С. 4–10.

Гуреева И. И. Равноспоровые папоротники Южной Сибири. Систематика, происхождение, биоморфология, популяционная биология. — Томск : Изд-во Том. ун-та. 2001. — 158 с.

Егорова Т. В. Осоки (*Carex* L.) России и сопредельных государств (в пределах бывшего СССР). — C-Петербург, 1999. — 772 с.

Иваненко Ю. А. Новый межвидовой гибрид рода *Diphasiastrum (Lycopodiaceae*) с Дальнего Востока // Бот. журн., 1992. Т. 77. № 8. С. 123–126.

Иваненко Ю. А. Lycopodiaceae // Флора российского Дальнего Востока: Дополнения и изменения к изданию «Сосудистые растения советского Дальнего Востока». Т. 1–8 (1985–1996). — Владивосток: Дальнаука, 2006. — С. 16–22.

Кожевников А. Е. Сурегасеае // Сосудистые растения советского Дальнего Востока, 3. — Л. : Наука, 1988. — С. 175–403.

Комаров В. Л. Флора полуострова Камчатка. Т. 3. — Л. : Изд-во АН СССР, 1930. — 210 с.

Недолужко В. А. Salicaceae // Сосудистые растения советского Дальнего Востока, 7. — СПб. : Наука, 1995. — С. 145–212.

Определитель сосудистых растений Камчатской области. — М. : Наука, 1981. — 409 с.

Павлова Н. С. Fabaceae // Сосудистые растения советского Дальнего Востока. Т. 4. — Л. : Наука, 1989. — С. 191–339.

Павлова Н. С. Род *Stellaria* L. // Сосудистые растения советского Дальнего Востока. Т. 8. — СПб. : Наука, 1996. — С. 65–85.

Пробатова Н. С. Роасаеа // Сосудистые растения советского Дальнего Востока, 1. — Л. : Наука, 1985. — С. 89-382.

Пробатова Н. С. Poacaea // Флора российского Дальнего Востока: Дополнения и изменения к изданию «Сосудистые растения советского Дальнего

Востока». Т. 1–8 (1985–1996) / Отв. ред. А. Е. Кожевников и Н. С. Пробатова. — Владивосток : Дальнаука, 2006. — С. 327–391.

Скворцов А. К., Белянина Н. Б. О бальзамических тополях (*Populus section* Tacamahaca, *Salicaceae*) на востоке Азиатской России // Бот. журн., 2006. Т. 91. № 8. — С. 1254–1262.

Сосудистые растения советского Дальнего Востока. Т. 1–8. — Л.: Наука, 1985–1996

Хохряков А. П. Новые виды цветковых растений из южной части Магаданской области и с Камчатки // Биология растений и флора Севера Дальнего Востока. — Владивосток: ДВНЦ АН СССР, 1981. —С. 12–20.

Цвелёв Н. Н. Злаки СССР. — Л.: Наука, 1976. — 788 с.

Цвелёв Н. Н. Polypodiophyta. // Сосудистые растения советского Дальнего Востока, 5. — Л.: Наука, 1991. — С. 25–122.

Якубов В. В. Сосудистые растения Кроноцкого биосферного заповедника (Камчатка). — Владивосток, 1997. — 100 с.

Якубов В. В. Иллюстрированная флора Кроноцкого заповедника (Камчатка): Сосудистые растения. — Владивосток: БПИ ДВО РАН, 2010. — 296 с.

Якубов В. В., Чернягина О. А. Сосудистые растения // Красная книга Камчатки. Том. 2. Растения, грибы, термофильные микроорганизмы / Отв. ред. О. А. Чернягина. — Петропавловск-Камчатский: Камч. печ. двор. Книжное издательство, 2007. — С. 14–166.

Komarov V. L. Ex herbario Horti botanici Petropolitani. // Reprtorium specierum novarum regni vegetabilis herausgeg. v. Fr. Fedde. Decas secunda, XIII, 1914. P. 84–87. Vells Elizabeth F., Elvandert Patrick P. Saxifragaceae // Flora of North America. Vol. 8. New York — Oxford: Oxford University Press. 2009. 43–146 p.

ПРОСТРАНСТВЕННАЯ ДИФФЕРЕНЦИАЦИЯ КОКАНИ В БАССЕЙНЕ ОЗ. КРОНОЦКОЕ

Г. Н. Маркевич^{1,2}, Е. А. Салтыкова¹
g-markevich@yandex.ru

¹ Кафедра ихтиологии Биологического факультета МГУ
им. М. В. Ломоносова

² ФГБУ «Кроноцкий государственный заповедник»


Ключевые слова: Кроноцкий заповедник, кокани, оз. Кроноцкое.

Анализ пространственного распределения кокани в бассейне оз. Кроноцкое показал, что в разных частях водоема на нерестилищах разного

типа нерестятся рыбы различные по своим биологическим характеристикам. В одно и то же время в небольших ручьях северо-восточной части озера происходит нерест крупных рыб, по количеству тычинок относящихся к группе бентофагов, в реках, стекающих в озеро с юга — мелких, существенно более гетерогенных по количеству тычинок, в целом принадлежащих к группе планктофагов. Для озерных нерестилищ отмечена смена группировок бентофагов и планктофагов в небольшом временном интервале. В реликтовом оз. Унана обнаружены бентофаги кокани по своим размерным характеристикам и срокам нереста отличающиеся от таковых из основной части бассейна оз. Кроноцкое. На основании полученного распределения предложена теория о возникновении морфологического разнообразия кокани в бассейне оз. Кроноцкое.

Озеро Кроноцкое — крупный водоем подпрудного типа, возникший примерно 12-14 тыс. лет назад в результате извержения вулкана Крашенинникова. Все водотоки, стекающие в озеро, можно разделить на 2 типа: крупные реки с выраженными горными и равнинными участками, небольшие ручьи. В поймах крупных рек существует ряд небольших реликтовых озер, оставшихся после понижения уровня озера, произошедшего в результате срабатывания лавовой плотины. Из озера вытекает река Кроноцкая, сформированная в горном участке системой порогов, непроходимых для анадромных рыб. Ихтиофауна озера представлена озерными гольцами (p. Salvelinus) и жилой формой нерки (Oncorhynchus nerka Walb.). Кокани — озерная (жилая) форма нерки в оз. Кроноцкое представлена двумя трофическими формами — планктофагами и бентофагами (Куренков, 1979). По данным С. И. Куренкова, планктофаги, по сравнению с бентофагами, характеризуются меньшими размерами тела и количеством жаберных тычинок более 40. Озерная нерка освоила весь возможный спектр потенциальных нерестилищ как в самом озере, так и в водотоках бассейна. Было показано, что, по крайней мере на озерных нерестилищах, время размножения данных форм разделено, бентофаги нерестятся раньше, и только к моменту окончания их нереста в тех же участках водоема появляются первые созревающие планктофаги. В работе С. И. Куренкова не рассматривается полное многообразие нерестилищ кокани в бассейне оз. Кроноцкое, в частности крайне скудно описан нерест и морфологические особенности рыб из крупных рек, стекающих в озеро. Цель нашего исследования — выявление локальных нерестовых группировок кокани в различных участках бассейна и водотоках разного типа.

Материал был собран в бассейне оз. Кроноцкое в 2003, 2004, 2010 и 2011 гг. Кокани облавливали в районе истока р. Кроноцкая, в устье руч. Тундровый, на нерестилищах руч. Аланд и Малаховый, в среднем течении р. Узон и в реликтовом оз. Унана (рис. 1). Обловы проводили сетями с шагом ячеи 30 и 40 мм. С каждой из пойманных рыб были сняты следующие показатели: полная длина тела (L) в мм, масса тела (W) в г, оценивалась стадия зрелости (ст. зр.) в баллах от 1 до 6, подсчитывалось количество жаберных тычинок (sp. br.). Материал был обработан с помощью программ Statistica 8.0 и Microsoft Exel 2003.

Рис. 1. Расположение станций обловов. 1 — исток р. Кроноцкая; 2 — устье руч. Тундровый; 3 — кл. Аланд; 4 — кл. Малаховый; 5 — р. Узон; 6 — оз. Унана

В результате нашего исследования показано, что по своим морфологическим показателям кокани в разных частях бассейна озера значительно отличается (табл. 1). В 2011 г. в одно и то же время (8–10 августа 2011 г.) на речных нерестилищах р. Узон и на ручьевых нерестилищах ключей Аланд и Малаховый были пойманы нерестящиеся рыбы, достоверно отличающиеся по своим размерно-массовым характеристикам. Производители из р. Узон были существенно мельче (L_{co} = 228 мм)

таковых из ручьевых нерестилищ (L_{co} = 260 мм). Подсчет жаберных тычинок показал, что у кокани с ручьевых нерестилищ их количество варьировало в диапазоне от 22 до 37, а с речных — от 29 до 48. При этом кокани из р. Узон характеризуется и значительно более высокими показателями дисперсии этого признака по сравнению с таковыми из ручьев Аланд и Малаховый, 17.91 и 7.37, соответственно. В выборке из реликтового оз. Унана (18 августа 2011 г.) присутствовали рыбы, как на ранних, так и на поздних стадиях зрелости. Средняя длина преднерестовых рыб составила 248 мм, количество жаберных тычинок колебалось в пределах от 29 до 36 с дисперсией 5.21. В выборке с озерного нерестилища. находящегося в истоке р. Кроноцкая (15 сентября 2003 г. и 4 сентября 2004 г.) рыбы характеризовались следующими показателями: в 2003 г. — 222 мм, в 2004 г. — 235, количество жаберных тычинок от 32 до 42 с дисперсией 8.52. На озерных нерестилищах (устье руч. Тундрового) с интервалом в две недели (конец июля — начало августа 2010 г.) были пойманы кокани, различавшиеся по своим показателям. В июле они характеризовались большими размерами тела (280 мм) и меньшим количеством тычинок (36); в начале августа, соответственно, 237 мм и 40.

Анализ зависимости длина — масса показал, что рыб можно разделить на несколько совокупностей (рис. 2). Так близкими оказались выборки из р. Узон и истока р. Кроноцкая. Отдельную совокупность точек представляют собой рыбы из руч. Алнанд и Малаховый — они в целом обладают большей длиной и массой по сравнению с таковыми озерного нерестилища «Исток» и речного «Узон», а кокани из оз. Унана оказались непохожими как на первых, так и на вторых — характеризуются наибольшим показателем соотношения длина-масса среди всех исследованных выборок.

Подводя итог проделанной работе, следует отметить, что для озерных нерестилищ подтверждаются данные С. И. Куренкова: нерест планктофагов и бентофагов разобщен во времени, на нерестилище в истоке руч. Тундровый отмечена смена этих двух группировок кокани с интервалом в 2 недели. Особо следует сказать о кокани оз. Унана, где обитает изолированная группировка, относящаяся по количеству тычинок к бентофагам, и нерест которой происходит позднее чем в других местах. К 20 августа 2011 г. пойманные рыбы находились на 4 стадии зрелости, брачный наряд еще не был сформирован, тогда как у бентофагов на ключевых нерестилищах нерест подходил к завершению. Кокани оз. Унана характеризуются крупными размерами.

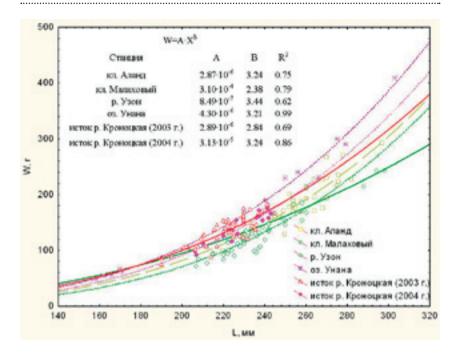


Рис. 2. Зависимость длины и массы у кокани из разных выборок

Размер и масса кокани на озерных нерестилищах, в районе истока р. Кроноцкая, относительно стабильны во времени — существенных различий в показателях за 2003, 2004 гг. не наблюдается (табл. 1). Морфо-биологические показатели кокани, нерестящейся в одно и то же время в реках и ручьях, различались в зависимости от типа нерестилища. Кокани с ручьевых нерестилищ можно признать группировкой, соответствующей бентофагам. При этом у кокани из р. Узон отмечено значительное варьирование по количеству жаберных тычинок, так что одних особей можно интерпретировать как планктофагов (пороговое значение жаберных тычинок более 40), тогда как других — как бентофагов (пороговое значение жаберных тычинок менее 40). Стоит отметить, что по показателям длины тела различия в этих группировках не были обнаружены. В целом в группе планктофагов можно отметить неоднородность по количеству жаберных тычинок, тогда как в группе бентофагов этот показатель относительно стабилен.

Таблица 1. Основные биологические характеристики кокани бассейна оз. Кроноцкое.

					;		
	Время облова	Г, мм	W, r	sp.br., шτ	D (sp. br.)	ст. зр., баллов	Соотношение полов (самцы : самки)
р. Узон	начало августа 2010 г.	228±1.6 (43) 206–250	137±3.1 (43) 71–167	39±0.7 (42) 29–48	17.91	41/2-5	6:1
кл. Аланд	начало августа 2010 г.	260± 2.4(35) 220–297	191±7.1(35) 98–291	30±0.5(35) 22-35	7.4	4½-6	4:1
кл. Малаховый.	начало августа 2010 г.	265±5.9(11) 242–298	186±11.3(11) 134–243	31±1.0(11) 24-37	10.2	4-5	5:1
оз. Унана	20 августа 2011 г.	248±16.3(9) 131–303	251±24.5(9) 170-410	33±0.6(15) 29–36	5.2	4	1:1
исток р. Кроноцкая	сентябрь 2003 г.	222±1.8(50) 190–245	136±3.7(50) 75–183	40±0.5(50) 28-45	12.9	3-6	2:1
исток р. Кроноцкая	сентябрь 2004 г.	235±6.2(20) 206–336	143±5.3(20) 92–176	38±0.7(20) 32-42	8.5	4-6	2:1
устье руч. Тундровый	конец июля 2010 г.	280±3.7(8) 268-300	256±13.5(8) 200–310	36±0.6(8) 33–38	2.5	4-5	7:1
устье руч. Тундровый	начало августа 2010 г.	237±13.9(8) 202–296	159±32.6(8) 84-315	40±1.6(8) 33–46	21.6	3–5	3:1

Особенности пространственного распределения кокани и её дифференциация на нерестилищах разного типа позволяет выдвинуть ряд теоретических построений о возможном возникновении группировок кокани. После образования лавовой плотины водоем длительное время функционировал при постоянном подъеме уровня воды. В таких условиях происходило перераспределение мест выхода грунтовых вод и затопление нерестилищ проходной нерки, находившихся в реке Палеокроноцкая. В образующемся водоеме возникали зоопланктонные и бентосные сообщества с характерной для них динамикой. По-видимому, основные нерестовые площади, оказавшиеся в зоне затопления, на длительный период оказались непригодными для воспроизводства, а озерные нерестилища еще не сформировались. В связи с этим наибольшую роль в образовании структуры популяции кокани должны были получить речные и ручьевые нерестилища, находившиеся выше зоны затопления. Условия в водотоках существенно различались, что неизбежно оказывало влияние на условия развития икры и время выхода молоди из гнезд. Молодь, скатывавшаяся в озеро в разное время, попадала в различные биотические условия, в частности и в различные трофические оптимумы, зависящие от динамики новообразованных планктонных и бентосных сообществ. Различные условия питания неизбежно влияли на темп роста, возраст созревания и сроки нереста. В этом аспекте можно рассматривать речные и ручьевые нерестилища как центр и стартовый толчок начинавшегося формообразования нерки. При этом в ряде мелких реликтовых озер, расположенных рядом с оз. Кроноцкое, обитает нерка, значительно отличающаяся от кокани из основной части бассейна. Примером такой популяции является кокани из оз. Унана. Данная группировка существует изолированно от основной популяции кокани и, возможно, несет в себе ряд предковых черт. Таким образом, на образование структуры популяции жилой нерки из молоди проходной существенно влияли поступательные изменения гидрологических и трофических условий в водоеме.

После завершения первых этапов формирования современного оз. Кроноцкое кокани начала осваивать новообразованные нерестилища озерного типа. Будучи уже разделенной по срокам нереста и темпу роста, молодь, мигрируя в пелагиаль, дифференцировалась на пелагическую и донную группировки. Мы предполагаем, что разделение происходило следующим образом: так как крупная молодь нерки в пелагиали избирательно выедается гольцами, она была вынуждена мигрировать на нижние горизонты. В стратифицированной среде, попадая в зоны

ниже термоклина, она оказывалась вне зоопланктонного пищевого оптимума. В этих условиях единственным значимым пищевым ресурсом является бентос. Также стоит отметить, что, оказываясь в нижнем горизонте, данная молодь растет при более низких температурах, чем молодь, оставшаяся в пелагиали. Описанный механизм, по нашему мнению, послужил основой для долговременной стабилизации структуры популяции и дал начало отбору, приведшему, на данный момент к образованию формы планктофагов и бентофагов.

Благодарности

Работа выполнена при поддержке Кроноцкого государственного природного биосферного заповедника при финансовой Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» ГК № П1298 от 9 июня 2010 г.

Авторы глубоко признательны всему экспедиционному коллективу, работавшему на озере Кроноцкое в 2010 и 2011 гг. Особую благодарность авторы выражают с.н.с. ВНИРО д.б.н. Н. С. Мюге за ценную критику при обсуждении результатов.

Литература

Куренков С. И. 1979. Популяционная структура кокани Кроноцкого озера. Автореф. дисс... канд.биол.наук. — М.: МГУ. — 250 с.

ВИДОВОЙ СОСТАВ ЗООПЛАНКТОНА ОЗЕРА КРОНОЦКОЕ ЛЕТОМ **2010** г.

Г. А. Абызова¹, А. И. Лавров¹, Г. Н. Маркевич^{1,2}
¹ Биологический факультет Московского Государственного
Университета им. М. В. Ломоносова,
² ФГБУ «Кроноцкий государственный заповедник»

Ключевые слова: Кроноцкий заповедник, оз. Кроноцкое, зоопланктон.

В озере Кроноцкое было обнаружено 17 видов планктонных организмов (2 вида Сорероda, 7 видов Cladocera, 8 видов Rotifera), были определены доминантные виды, их горизонтальное и вертикальное распределение по акватории, а также выявлены взаимосвязи между

распределением зоопланктонных организмов и условий в водоеме. На основании полученных данных были выделены факторы, определяющие распределение зоопланктона в озере Кроноцкое.

Зоопланктонные сообщества озер Камчатки имеют ряд общих характерных черт. Доминирующим видом обычно является *Cyclops scutifer* Sars, 1863, основные субдоминанты: *Daphnia* spp. и *Leptodiaptomus angustilobus* (Sars, 1898). Среди коловраток характерный доминирующий вид для Камчатки — *Kellicottia longispina* (Kellicott, 1879). Отличительной особенностью динамики является наличие одного максимума численности в августе — октябре (Куренков, 2005). Копеподидный зоопланктон играет важную роль в экосистемах озер Камчатки, являясь основным кормовым объектом для молоди нерки (*Oncorhynchus nerka* Walb.). Горизонтальное и вертикальное распределение ракообразных преимущественно зависит от факторов среды (распределение температур, динамика ветровой нагрузки и т.п.).

Озеро Кроноцкое — крупный пресноводный водоем полуострова Камчатка. Большая площадь акватории и существенная глубины озера, а также сильная изрезанность береговой линии, сложная морфология чаши озера создают ряд условий к дифференциации зоопланктонного сообщества водоема. Значение каждого из этих факторов не очевидно, что может быть выявлено только при детальным изучении сообщества и его взаимодействия с имеющимися абиотическими градиентами. Выявление значения каждого из образующих факторов является ключом к пониманию структуры всего зоопланктонного сообщества.

Цель данной работы — выявить видовой состав и особенности распределения зоопланктона по акватории оз. Кроноцкого и определить комплекс основных факторов, формирующих пространственную структуру сообщества.

Материалы и методы

Сбор проб проводили с 25 июля по 4 августа 2010 г. с помощью сети Джеди (диаметр 17,5 см; газ № 72) в первой половине дня. Для проведения планктонной съемки на озере была заложена сетка станций, состоящая из 13 точек, с разной глубиной и температурным режимом. Станции расположены как в открытой части водоема, так и в заливах (рис. 1). Сбор проб проводили по следующим горизонтам: горизонт 10–0 м, горизонт 20–10 м (на станциях ГБ1 и ГБ2 собирали один горизонт 20–0 м), придонный горизонт шириной ~ 10 м, оставшийся столб воды разбивали на 1