Экология. Экспериментальная генетика и физиология. Труды Карельского научного центра РАН Выпуск 11. Петрозаводск, 2007. С. 3-9.

ПОПУЛЯЦИОННЫЕ АСПЕКТЫ ИЗУЧЕНИЯ МОРФОЛОГИЧЕСКОЙ ИЗМЕНЧИВОСТИ ЦЕСТОДЫ PROTEOCEPHALUS PERCAE (CESTODA: PROTEOCEPHALIDEA) В ОНТОГЕНЕЗЕ

Л. В. АНИКИЕВА

Институт биологии Карельского научного центра РАН

Изучены популяционные параметры морфологической изменчивости цестоды *Proteocephalus percae* в онтогенезе: свободноживущей стадии — яйца и трех паразитических: процеркоидов из веслоногих ракообразных, неполовозрелой (плероцеркоиды) и половозрелой стадий из окуня *Perca fluviatilis*. Установлено высокое морфологическое разнообразие гельминта на всех стадиях развития. Выявлены специфические параметры изменчивости отдельных стадий развития. Рассмотрены вопросы паразито-хозяинных отношений. Показано, что характер морфологической разнородности определяется стратегией жизненного цикла паразита.

L. V. ANIKIEVA. POPULATION ASPECT IN THE STUDY OF MORPHOLOGICAL VARIABILITY OF THE CESTODE *PROTEOCEPHALUS PERCAE* (CESTODA: PROTEOCEPHALIDEA) THROUGH THE ONTOGENY

The morphological diversity of *Proteocephalus percae* through the ontogeny was studied: egg, procercoid from copepods, immature and mature cestodes from perch *Perca fluviatilis*. Morphological parameters with the specificity of host-parasite relationships at different developmental stages have been shown.

Изменчивость входит в число основных биологических понятий, являясь одновременно фактором эволюции и причиной эволюционной стабильности отдельных признаков, целостных организмов, популяций и видов (Шмальгаузен, 1968). Представление о внутривидовой изменчивости базируется на высокой степени разнообразия особей, составляющих биологический В понятие изменчивости, Ю. А. Филипченко (1978), входят два различных элемента: изменчивость как известное состояние и изменчивость как процесс. Существование раздельными особями и их группами — это признаки изменчивости состояния. Однако каждое состояние возникает в результате процесса, и наблюдаемые отличия возникают под влиянием определенных причин. Для их анализа необходимо вычленять изменчивость как процесс и различать при этом изменения под влиянием внешних условий, в результате гибридизации и т.д. Понимание биологического смысла изменчивости Ю. А.Филипченко согласуется с трактовкой этого явления Э. Майром (1974), который в изучении изменчивости выделяет два уровня исследований: индивидуальный и групповой (популяционный).

Морфологическая изменчивость паразитических организмов представляет особенный интерес. Известно, что по глубине морфологических перестроек и масштабу различий изменчивость паразитов не имеет аналогов среди животных организмов и может быть сравнима только с растениями (Завадский, 1968; Фрезе, 1987). Специфика формирования морфологической изменчивости паразитов связана с особенностясуществования, среди А. А. Филипченко (1937) выделяет три основных. Первая — средой обитания паразита является живой организм, поэтому взаимоотношения между паразитом и средой обитания имеют своеобразный характер: влияние организма на среду и среды на организм двустороннее. Вторая — факторы внешней среды воздействуют на паразита опосредованно через организм хозяина. И третья — в экологии паразитических организмов имеются специфические факторы среды (хозяина) и изменения в организме (паразита), отсутствующие в экологии свободноживущих организмов. Резкое изменение окружающей паразита среды на отдельных этапах его жизненного цикла, обитание в разных видах хозяев происходят на самом ограниченном пространстве и в самое короткое время. Поэтому многие биологические процессы у паразитов имеют более выраженный характер, чем у свободноживущих видов. По мнению А. А. Филип-ченко (1937): «Никто не докажет нам с такой убедительностью изменяемости форм и способности приспособиться к условиям существования, как именно изучение форм паразитов» (с. 14).

Общее число публикаций по изменчивости паразитов в настоящее время достаточно большое. Исследования по изменчивости паразитов посвящены, в основном, анализу признаков с целью определения их значимости как критерия вида (Шульц, Гвоздев, 1972). Признание сложной структуры вида, его политипичности обусловили новый качественный этап изучения морфологической изменчивости паразитов. Суть его заключается в изучении адаптивного значения изменчивости и выяснения причин, ее обусловливающих, а также характера проявления изменчивости у разных внутривидовых групп особей (Ройтман, Казаков, 1977). На данном этапе популяция становится основной единицей исследования, а статистические методы — главным аналитическим инструментом.

В настоящее время о структуре популяции паразита сложилось представление как об интегрированном отражении его онтогенеза (Ройтман, 1981). Развитие большинства паразитов проходит с метаморфозом и сменой среды обитания. В связи с этим отдельные возрастные группы формируются при разных условиях внешней среды и испытывают неодинаковое давление естественного отбора. Данные о морфологическом разнообразии паразитов на популяционном уровне немногочисленны. Возрастная изменчивость паразитов как популяционно-морфологический параметр структуры популяции изучена слабо (Куперман, 1973; Аникиева и др., 1983; Фрезе, 1987; Аникиева, 1992; Аникиева, Иешко, 2007).

Цестода *P. percae* — типичный паразит обыкновенного окуня *Perca fluviatilis* — встречается почти повсеместно в ареале хозяина, широко распространенного в Евразии — реках, озерах, прибрежных участках моря. Это один из немногих видов, на примере которых выявлялись закономерности пространственной органи-

зации популяции паразитов и динамики численности (Иешко, 1988; Ieshko, Anikieva, 1992; Аникиева, Иешко, 2001). Онтогенез Р. регсае проходит следующим образом: яйцо (онкосфера шестикрючный зародыш) созревает непосредственно в матке гельминта и выделяется во внешнюю среду; в промежуточном хозяине — веслоногих ракообразных онкосфера превращается в процеркоид (личинку с церкомером), там же теряет церкомер и переходит в следующую плероцеркоидную стадию. В окончательном хозяине — рыбе — плероцеркоиды развиваются до половозрелого состояния и продуцируют яйца. Гельминт имеет годичный цикл развития, а его популяция характеризуется сложной возрастной структурой. Формирование зараженности окуня Р. регсае начинается в июле. Оно слабо выражено в летние месяцы и растянуто во времени. Интенсивная иммиграция отмечена осенью. В течение зимы численность гельминта нарастает значительно медленнее и достигает максимальных значений в марте. Зимой популяция представлена преимущественно неполовозрелыми особями. Их рост и развитие до половозрелой стадии начинается после распаления льда и прогревания водоема. Освобождение окуня от цестод происходит при температуре воды 19°C (Ieshko, Anikieva, 1992).

В задачу настоящего исследования входило изучение формирования морфологической изменчивости и характера разнородности цестоды *Proteocephalus percae* в онтогенезе.

Материал и методы

Материал по изменчивости *P. percae* был собран одновременно с изучением динамики его численности и возрастной структуры на одном из малых водоемов южной Карелии — оз. Риндозеро (Ieshko, Anikieva, 1992). Исследовалась одна и та же возрастная группа хозяев, что позволило использовать данные по зараженности рыбы для количественного определения популяционных параметров обитающего в ней паразита. Сроки вскрытия рыб определялись особенностями биологии гельминта. В период открытой воды рыб вскрывали с еженедельным интервалом, в зимние месяцы — в ноябре, декабре, январе и марте. В каждой выборке просматривали 30 экз. рыб. Личинок извлекали из спонтанно зараженных рачков. В анализ включено 8 группировок Р. регсае, из них 4 — преимагинальные группировки: яйца, процеркоиды, молодые плероцеркоиды, перезимовавшие плероцеркоиды и четыре выборки взрослых гельминтов. Выборки взрослых гельминтов были собраны 19.ІІІ, 20.Ү, 09.ҮІ и 22.ҮІ при разной

температуре воды: $+4^{\circ}$ С (подо льдом), $+7^{\circ}$ С (после распаления льда), $+10^{\circ}$ С и $+16^{\circ}$ С. Они условно названы зимней (1-я выборка), весенней (2-я выборка) и летней (3-я и 4-я выборки). Всего было выделено 22 признака Р. регсае. Из них 4 встречаются только у яиц (размеры онкосферы и трех ее оболочек), 5 признаков — общие у личинок и взрослых: сколекс (длина, ширина), диаметр боковых присосок, диаметр апикальной присоски, общая длина тела и 11 признаков характерны только для взрослых гельминтов: половозрелые членики (длина, ширина), семенники (количество, длина, ширина), бурса цирруса (длина, ширина), яичник (размах и высота крыльев), отношение длины членика к его ширине, отношение длины бурсы цирруса к ширине членика. Материал обработан статистически (Лакин, 1973). Анализировали пределы изменчивости и средние значения признаков. Достоверность различий рассчитывали по критерию Стьюдента. Уровень изменчивости CV определяли по шкале Мамаева (1975): очень низкий (до 7%), низкий (8-12%), средний (13-20%), повышенный (21-30%), высокий (31-40%), очень высокий (более 40%). Характер распределения признаков оценивали с помощью коэффициента асимметрии и встречаемости частотных классов. Каждая выборка за исключением процеркоидов, которых было собрано всего 12 экз., включала по 30 экз. цестод.

Результаты и обсуждение

Установлено, что яйца, формирующиеся полностью в матке гельминта и находящиеся во внешней среде относительно короткое время, имеют невысокие показатели изменчивости. Наиболее слабо варьируют размеры онкосферы. Высокие положительные коэффициенты эксцес-

са и низкие асимметрии отражают стабильность и консервативность этого признака. Отрицательный эксцесс внутренней оболочки свидетельствует о том, что она не всегда плотно прилегает к зародышу. Размеры наружной (слизистой) оболочки, обеспечивающей плавучесть, — наиболее изменчивый признак яиц *P. регсае*. Ее размеры значительно варьируют и превышают диаметр онкосферы в 4-13 раз (табл. 1).

Размеры процеркоидов колеблются в широких пределах. Наиболее сильно варьируют размеры тела (длина и ширина). Из органов прикрепления наиболее изменчива ширина сколекса (табл. 2). На этой стадии формируются характерные признаки головного конца Р. регсае, которые при последующем росте и развитии особей лишь увеличиваются в размерах, но сохраняют те же пропорции. Изменчивость плероцеркоидов, попавших в рыбу в летне-осенний период, высока. По-прежнему широко варьирует длина тела и ширина сколекса. Уменьшается коэффициент вариации CV длины сколекса. Перезимовавшие плероцеркоиды крупнее. Коэффициент вариации всех признаков перезимовавших плероцеркоидов, за исключением длины тела, ниже, чем у летне-осенних плероцеркоидов (табл. 3, 4).

Морфометрические показатели признаков взрослых гельминтов, собранных в разное время (зимой — 19.III, весной — 20.V и летом — 9.VI, 22.VI), имеют разный размах изменчивости. Максимальные пределы варьирования свойственны длине стробилы, половозрелым членикам и яичнику. Во всех четырех выборках признаки прикрепления менее вариабельны, чем трофико-репродуктивные признаки. В то же время каждая из выборок характеризуется специфическими параметрами морфометрических показателей (табл. 5).

Таблица 1. Морфометрические показатели *Proteocephalus percae* на стадии яйца, мкм

Признак	Пределы	M±m	δ	CV	Асимметрия	Эксцесс
Онкосфера	14-19,6	17±0,2	1,1	5,9	0,7	4,1
Внутренняя оболочка	20-22,4	22±0,3	1,4	6,6	-0,1	-2,1
Средняя оболочка	28-39,2	35±0,4	2,3	6,6	-1,0	1,6
Наружная оболочка	70-226,2	155±6,5	35	22,8	-0,7	0,8

Таблица 2. Морфометрические показатели процеркоидов Proteocephalus percae, мкм

Признак	Пределы	M±m	δ	CV	Асимметрия	Эксцесс
Длина сколекса	31-56	46±2,6	9,1	20,1	-0,4	-0,7
Ширина сколекса	42-104	73±5,3	18,4	25,2	0,18	-0,3
Диаметр апикальной присоски	11-13	11±0,6	1,9	16,8	0,07	-0,6
Диаметр боковых присосок	20-34	28±1,5	5,3	18,7	-0,7	-0,9
Длина тела	290-1160	521±75	260	50	1,6	2,4
Ширина тела	128-325	220±17	59	27,3	0,1	-0,4

Таблица 3. Морфометрические показатели плероцеркоидов Proteocephalus percae, мкм (осень)

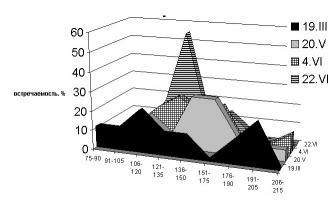
Признак	Пределы	M±m	δ	CV	Асимметрия	Эксцесс
Длина сколекса	40-80	56,5±1,7	9,3	16,4	0,3	0,2
Ширина сколекса	113-388	193,2±9,1	49,8	25,8	2,0	7,2
Диаметр апикальной присоски	11-22	17±0,6	3,5	20,6	-0,1	-1,0
Диаметр боковых присосок	25-68	40±1,4	7,8	19,6	1,3	5,2
Длина тела, см	0,06-0,24	$0,1\pm0,07$	0,39	36	1,2	2,1
Ширина тела, см	0,0075-0,025	$0,02\pm0,01$	0,06	38	0,26	-1,3

Таблица 4. Морфометрические показатели плероцеркоидов Proteocephalus percae, мкм (весна)

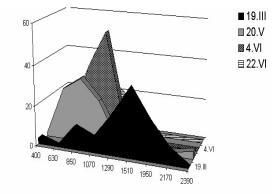
Признак	Пределы	M±m	δ	CV	Асимметрия	Эксцесс
Длина сколекса	47–90	65,9±1,7	9,1	14,0	0,1	1,1
Ширина сколекса	176-324	257±6,3	3 4 ,7	13,5	-0,2	-0,1
Диаметр апикальной присоски	18-29	24,0±0,6	3,3	13,5	0,1	-0,9
Диаметр боковых присосок	47–68	54,7±0,9	5,1	9,3	1,0	0,9
Длина тела, см	0,2-0,9	0.5 ± 0.04	0,23	48,0	0,1	-1,4
Ширина тела, см	0,015-0,045	$0,26\pm0,01$	0,07	26,8	1,1	1,6

Таблица 5. Некоторые морфометрические показатели половозрелых стробил *P. percae*, мкм

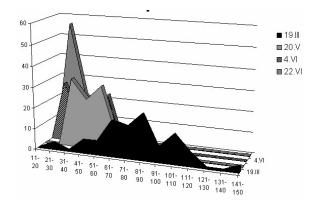
Признак	Пределы	M±m	CV
	Зимняя выборка (19.III.19	<u></u>	
Ширина сколекса	1 44 -227	188±15	19,6
Диаметр боковых присосок	68-86	77±2,1	7,1
Диаметр апикальной присоски	29-43	37±2,4	14,7
Длина членика	211-1057	471±31	33,8
Ширина членика	606-1551	1112±48	54,4
Число семенников	47-150	84±4,5	27,2
Длина бурсы цирруса	155-507	373,8±10	14,2
Длина яичника	394-1092	773±38	22,4
Длина стробилы, см	0,8-7,7	2,2±0,3	77
	Весенняя выборка (20.V.19	987)	
Ширина сколекса	129-270	195±1,6	18,4
Диаметр боковых присосок	54-86	65,7±1,5	12,2
Диаметр апикальной присоски	22-47	29±1,2	21,7
Длина членика	211-705	422±21	30
Ширина членика	317-2326	812±75	54,4
Число семенников	33-81	48,7±2	24,2
Длина бурсы цирруса	155-507	313,8±20	33
Длина яичника	197-1163	521±82	55
Длина стробилы, см	0,3-7,7	2,7±0,3	71
Пер	вая летняя выборка (09.V.	(I.1987)	
Ширина сколекса	129-270	195±6,5	18,3
Диаметр боковых присосок	57-93	70±1,7	12,9
Диаметр апикальной присоски	22-40	31,8±0,8	14,8
Длина членика	282-705	470±20	23,5
Ширина членика	458-1163	779±27	20,3
Число семенников	21-49	36,1±1,3	19,6
Длина бурсы цирруса	246-352	287±6	11,5
Длина яичника	141-881	547±26	26
Длина стробилы	0,8-6,0	2,17±0,3	59
	рая летняя выборка (22.V.		
Ширина сколекса	129-270	199±4,3	10,3
Диаметр боковых присосок	61-75	68±0,9	5,9
Диаметр апикальной присоски	25-40	31,2±1	14,8
Длина членика	141-549	297±23	36,7
Ширина членика	493-1022	721±34	22,4
Число семенников	14-51	31,4±2,1	32,2
Длина бурсы цирруса	246-352	261±9	11,5
Длина яичника	282-705	456±24	25
Длина стробилы	0,8-6,0	1,9±0,2	61


Установлено, что признаки прикрепления *Р. регсае* из разных выборок близки по пределам варьирования и средним значениям, но они различаются характером варьирования. Например, зимняя выборка наиболее разнообразна и выровнена по ширине сколекса. В весенней — доминируют 2 средних класса, которые в сумме составляют более 50% численности особей. В летних выборках чаще встречаются особи с меньшей шириной сколекса (рис. 1).

Трофико-репродуктивные признаки *P. регсае* более изменчивы, чем признаки прикрепления. Максимальные пределы варьирования свойственны половозрелым членикам и яичнику. Размеры этих признаков могут различаться в 6-17 раз. Минимальные различия характерны для бурсы цирруса, но и они достаточно широки — до трех раз.


Выявлены различия в пределах значений, средних показателях и коэффициентах варьирования трофико-репродуктивных признаков между группировками гельминтов, принадлежащих к разным выборкам. Максимальные различия в

длине члеников имеет зимняя выборка, в ширине члеников - весенняя, длине яичника - первая летняя, бурсы цирруса — зимняя и весенняя. Установлены достоверные отличия зимней выборки по средним значениям трех признаков: ширины членика (t > 3), длины бурсы цирруса (t > 2,7) и длины яичника (t > 2,8). Не обнаружено достоверных различий между второй, третьей и четвертой выборками по ширине членика, длине бурсы цирруса и яичника. Первая, вторая и третья выборки гельминтов достоверно различались числом семенников (t = 4,8-14,9), а четвертая была сходна с третьей выборкой и отличалась от первой и второй выборок.


Выборки также различались характером распределения значений признаков и модальными классами. Разнородность размерной структуры *P. percae* по ширине членика, а также двум важнейшим систематическим признакам вида — числу семенников и отношению длины бурсы цирруса к ширине членика демонстрируют рис. 2—4.

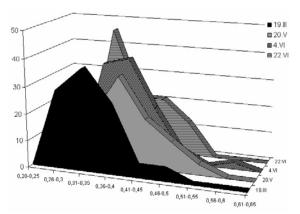

Рис. 1. Разнообразие репродуктивных группировок *P. регсае* по ширине сколекса, мкм

Рис. 2. Разнообразие репродуктивных группировок *Р. регсае* по ширине половозрелых члеников, мкм

Рис. 3. Разнообразие репродуктивных группировок *P. percae* по числу семенников

Рис. 4. Разнообразие репродуктивных группировок *Р. регсае* по отношению длины бурсы цирруса к ширине членика

Сопоставление коэффициентов варьирования половозрелых цестод из разных выборок позволило объединить признаки в три группы, различающиеся степенью изменчивости морфометрических показателей. Для первой группы свойственна сравнительно невысокая изменчивость (до 25%). В нее входят 5 признаков: длина и ширина сколекса, диаметр боковых и апикальной присосок, отношение длины бурсы цирруса к его ширине. Для второй группы признаков характерна изменчивость от 25 до 40%. Это — длина половозрелых члеников, число и диаметр семенников, длина бурсы цирруса и высота лопастей яичника. Третья группа представлена признаками, коэффициент вариации которых превышает 40% — отношение длины членика к его ширине, ширина члеников, длина лопастей яичника и длина стробилы.

Таким образом, изучение морфологической изменчивости Р. регсае в онтогенезе выявило широкие границы морфологических параметров возрастной структуры популяции гельминта. Известно, что популяционная изменчивость имеет приспособительное значение. Она обеспечивает целостность и относительную стабильность вида, а также наиболее полное и эффективное использование популяцией разнообразных условий жизни (Поляков, 1975; Никольский, 1980). Благодаря изменчивости в популяциях всегда присутствуют особи, сохраняющие свою приспособленность, несмотря на флуктуации внутрипопуляционных и внешних по отношению к популяции условий развития (Северцов, 1990).

Примененный нами популяционный подход к изучению морфологической изменчивости P. percae позволил сопоставить изменчивость популяции с численностью отдельных группировок и их ролью в функционировании системы. Пререпродуктивный и репродуктивный периоды популяции *Р. регсае* по продолжительности, численности и функционально неравноценны. Первый охватывает большую часть года и составляет основу численности (более 99%). Его основная роль заключается в расселении и создании фундамента для репродуктивного периода. Среди четырех пререпродуктивных группировок наиболее краткосрочна и массова сводноживущая (яйцо). Она же наименее изменчива. Закон большого числа яиц паразитов связан с их высокой смертностью. Вероятно, в этом случае морфологическая однотипность онкосфер, характерная и для зародышей других цестод (Куперман, 1973; Фрезе, 1987), биологически целесообразна. Она сочетается с высокой вариабельностью размеров наружной оболочки, определяющей плавучесть яиц. Мономорфные зародыши экологически неравнозначны. Рассредоточение яиц в разных горизонтах водоема обеспечивает их попадание в различные виды промежуточных хозяев.

На формирование первых паразитических стадий (процеркоидов и плероцеркоидов) существенное влияние оказывает степень их приуроченности к конкретному виду промежуточного хозяина. Широкий круг промежуточных хозяев P. percae, относящихся к разным подотрядам, определяет ведущее значение фактора гостальности и расширяет морфологическую вариабельность личиночных группировок. В период заражения окуня (осень) высокая изменчивость молодых плероцеркоидов отражает условия их развития в промежуточных хозяевах. В дальнейшем (зимой) внутрипопуляционные различия в этой группировке становятся меньше. Здесь взаимодействуют два процесса: неравномерный рост паразитов в течение зимних месяцев и стабилизирующее влияние хозяина, в котором элиминируются уклоняющиеся в развитии особи.

Репродуктивный период *Р. регсае* продолжается менее двух месяцев. Взрослые гельминты составляют лишь 0,02% от общей численности популяции (Ieshko, Anikieva, 1992). Однако популяция на данном этапе развития обладает максимальной морфологической разнокачественностью. Взаимосвязь изменчивости репродуктивных группировок Р. регсае с условиями обитания проявляется, прежде всего, в изменении характера распределения частотных классов значений признаков. Левосторонний сдвиг модальных классов значений трофических и репродуктивных признаков в весенней и летних группировках означает снижение темпа роста и развития особей. Процессы роста, созревания и элиминации взрослых гельминтов связаны с физиологическим состоянием хозяина. Повышение температуры воды свыше 8°С вызывает формирование иммунного ответа у окуня (Hokanson, 1977). Его внутреннее состояние приобретает ведущее значение для взрослых цестод и влияет на их морфологию. Установленный характер вариабельности морфометрических показателей P. percae отражает изменения в состоянии системы «паразит-хозяин». Зимой при низкой температуре воды иммунная система окуня толерантна к гельминтам, рост гельминтов замедлен. В условиях неустойчивой кормовой базы значительно варьируют из признаков прикрепления ширина сколекса, ИЗ трофикорепродуктив-ных признаков — длина и ширина членика. На весеннюю группировку действуют два фактора: внутривидовая конкуренция, обусловленная началом интенсивного роста цестод и увеличение сопротивляемости хозяина. Оба фактора вызывают усиление вариабельности параметров взрослых гельминтов и приводят к снижению численности. Поэтому следующая (первая летняя) группировка формируется в более стабильных условиях и характеризуется менее разнообразными показателями признаков. Однако дальнейшее повышение температуры усиливает иммунные реакции хозяина, что вновь приводит к увеличению изменчивости второй летней группировки.

Литература

- Аникиева Л. В. 1992. Морфологическая изменчивость популяции *Proteocephalus percae* в озере Риндозере // Паразитология. Т. 26. Вып. 5. С. 389-395.
- Аникиева Л. В., Иешко Е. П. 2001. Популяционные аспекты устойчивости паразитарных сообществ рыб на примере паразита окуня *Proteocephalus percae* (Cestoda: Proteocephalidea) // Экологопарази-тологические исследования животных и растений Европейского Севера (отв. ред. Е. П. Иешко). Петрозаводск. С. 49-57.
- Аникиева Л. В., Иешко Е. П. 2007. Морфологический полиморфизм цестоды Proteocephalus longicollis (Cestoda:Proteocephalidae) в онтогенезе // Паразитология. Т. 41. Вып. 2. С. 103-111.
- Аникиева Л. В., Малахова Р. П., Иешко Е. П. 1983. Экологический анализ паразитов сиговых рыб. Л.: Наука. 168 с.
- *Завадский К. М.* 1968. Вид и видообразование. Л. 396 с.
- *Иешко Е. П.* 1988. Популяционная биология гельминтов рыб. Л.: Наука. 118 с.
- Куперман Б. И. 1973. Ленточные черви рода *Triaeno-* phorus паразиты рыб. Л. 208 с.
- *Лакин Г. Ф.* 1973. Биометрия. М. 343 с.
- Майр Э. 1974. Популяции, виды и эволюция. М. 460 с.
- *Мамаев С. А.* 1975. Некоторые вопросы формирования популяционной структуры вида древесных растений // Экология. № 1. С. 39-49.

- Никольский Г. В. 1980. Структура вида и закономерности изменчивости рыб. М. 182 с.
- Поляков Г. Д. 1975. Экологические закономерности популяционной изменчивости рыб. М. 158 с.
- Ройтман В. А. 1981. Популяционная биология гельминтов пресноводных биоценозов // Итоги науки и техники. ВИНИТИ. Зоопаразитология. М. С. 43-88.
- Ройтман В. А., Казаков Б. Е. 1977. Некоторые аспекты изучения морфологической изменчивости гельминтов (на примере трематод рода *Azygia*) // Тр. Гельминтол. лаб. АН СССР. Т. 27. С. 110-128.
- Северцов А. С. 1990. Внутривидовое разнообразие как причина эволюционной стабильности // Журн. общей биологии. Т. 51. № 5. С. 579-590.
- Филипченко А. А. 1937. Экологическая концепция паразитизма и самостоятельность паразитологии как научной дисциплины. Проблемы общей паразитологии. Л. М. С. 4-14.
- *Филипченко Ю. А.* 1978. Изменчивость и методы ее изучения. М. 240 с.
- Фрезе В. И. 1987. Модификационный полиморфизм лентецов (морфофункциональные, экологические и эволюционные аспекты). Автореф. докт. дис. М. 46 с.
- *Шмальгаузен И. И.* 1968. Факторы эволюции. М.. 452 с.
- *Шульц Р. С., Гвоздев Е. В.* 1972. Основы общей гельминтологии. М. Т. 2. 515 с.
- Hokanson K. E. F. 1977. Temperature requirements of some percids and adaptations to the seasonal temperature cycle // J. Fish. Res. Board Canad. V. 34. P. 1524-1550.
- Ieshko E. P., Anikieva L. V. 1992. Life tables of fish helminths and their analysis with the cestode Proteocephalus percae a specific parasite of the perch Perca fluviatilis take as an example // Ecology of parasitology. St - P.; Petrozavodsk. V. 2. P. 135-149.