Полярный геофизический институт ФИЦ Кольский научный центр РАН Мурманский арктический государственный университет Мурманский государственный технический университет Мурманский морской биологический институт КНЦ РАН

XVIII Международная научная конференция студентов и аспирантов

«ПРОБЛЕМЫ АРКТИЧЕСКОГО РЕГИОНА»

Мурманск, 15 мая 2019 года

ТРУДЫ КОНФЕРЕНЦИИ

ISBN 978-5-91137-409-9 DOI 10.25702/KSC.978.5.91137.409.9 УДК [31 + 33 + 37 + 501 + 502 + 504](98)

П78 Проблемы Арктического региона: труды XVIII Международной научной конференции студентов и аспирантов (г. Мурманск, 15 мая 2019 г.) – Мурманск, 2019. – 212 с.

В сборнике представлены научные статьи по материалам докладов XVIII Международной научной конференции студентов и аспирантов «Проблемы Арктического региона». В книгу вошли результаты научной работы студентов и аспирантов различных вузов, научных организаций и их филиалов. Тематика представленных докладов включает исследования, связанные с физическими, химическими, биологическими, медицинскими, экологическими, техническими проблемами, а также посвященные вопросам педагогики, экономики и социологии Арктического региона. Материалы печатаются в авторской редакции.

Программный комитет конференции

Матишов Г. Г. – председатель, академик РАН, профессор, д.г.н., ММБИ КНЦ РАН, Мурманск,

ЮНЦ РАН, Ростов-на-Дону

Козелов Б. В. – заместитель председателя, д.ф.-м.н., ПГИ, Мурманск

Агарков С. А. – профессор, д.э.н., МГТУ, Мурманск

Бреймен Д. – профессор, Канзасский университет, Лоренс, США

Демидов В. И. – профессор, Университет Западной Вирджинии, Моргантаун, США

Князева М. А. – к.ф.-м.н., МАГУ, Мурманск

Жиров В. К. – чл.-корр. РАН, профессор, д.б.н., НИЦ МБП КНЦ РАН, Апатиты

Козлов Н. Е. – профессор, д.г.-м.н., ГИ КНЦ РАН, Апатиты

Кривовичев С. В. – чл.-корр. РАН, профессор, д.г.-м.н., ФИЦ КНЦ РАН, Апатиты

Паричкин Ф. Д. — профессор, д.э.н., ИЭП КНЦ РАН, Апатиты — профессор, д.б.н., ММБИ КНЦ РАН, Мурманск **Маслобоев В. А.** — профессор, д.т.н., ФИЦ КНЦ РАН, Апатиты

Отмесен О. Н. — профессор, Университет губернии Нурланд, г.Будё, Норвегия **Фролов И. Е.** — чл.-корр. РАН, профессор, д.г.н., ААНИИ, Санкт-Петербург

Редакция:

Адрес оргкомитета конференции:

С. М. Черняков Полярный геофизический институт,

Ю. А. Шаповалова 183010, Россия, Мурманск, ул. Халтурина, 15

E-mail: issc@pgi.ru

ХудожникТел: (8152) 253958А. А. ПлатоноваФакс: (8152) 253559

В дизайне обложки сборника трудов конференции использована работа Горбачевой А. Я., студента кафедры искусств, сервиса и туризма МАГУ.

http://pgia.ru/lang/ru/international-problems-of-the-arctic-region/

Научное издание Технический редактор В. Ю. Жиганов Подписано к печати 11.11.2019. Формат 60×84 1/8. Усл. печ. л. 24.65. Тираж 300 экз. Заказ № 38. Издательство ФГБУН ФИЦ КНЦ РАН. 184209, г. Апатиты, Мурманская область, ул. Ферсмана, 14. www.naukaprint.ru

[©] Полярный геофизический институт, 2019

[©] Коллектив авторов, 2019

разработать и принять Федеральный закон «О деятельности Российской Федерации в Арктике». В будущем законе целесообразно было бы предусмотреть более строгие экологические требования. Нельзя не брать во внимание вопрос использования альтернативных источников энергии. В российском законодательстве немного сказано по поводу таких источников энергии. Необходимо заложить в действующим законодательстве определенные экономические стимулы развития этой альтернативной деятельности. К ним могут относиться, например, налоговые льготы.

Литература

 Γ осударственный доклад о состоянии и об охране окружающей среды Мурманской области в 2017 году. URL: https://gov-murman.ru/upload/iblock/a35/Doklad_za-2017-god_ITOG_1.pdf (дата обращения: 01.08.2019 г.).

Доронина А. К. Международно-правовая защита окружающей среды Арктики: актуальные задачи и перспективы. // Экологическое право. 2016. № 1.

Загорский А. Россия и Китай в Арктике: разногласия реальные или мнимые. // Мировая экономика и международные отношения. 2016. Т. 60, № 2. С. 63–71.

Колбасов О. С. Международно-правовая охрана окружающей среды. М.: Международные отношения, 1982. С. 180.

Нуукская декларация об окружающей среде и развитии в Арктике (Вместе с «Докладом») от 16.09.1993. // СПС «КонсультантПлюс».

Постановление Правительства Российской Федерации от 10.08.1998~N~919~«О~Федеральной целевой программе «Мировой океан» // «Собрание законодательства Российской Федерации». <math>1998. №33. ст. 4024.

Постановление Правительства Российской Федерации от 14.03.2015 N 228 «Об утверждении Положения о Государственной комиссии по вопросам развития Арктики» // «Собрание законодательства Российской Федерации». 2015. №13. ст. 1928.

Стратегия развития Арктической зоны Российской Федерации и обеспечения национальной безопасности на период до 2020 года (утв. Президентом РФ) // СПС «КонсультантПлюс».

 Φ аткуллин Φ . H., Φ аткуллин Φ . Φ . Проблемы теории государства и права. Учебное пособие. Казань: Издательство Казанского юридического института МВД России, 2003. 351 с.

DOI: 10.25702/KSC.978.5.91137.409.9.183-188 УДК 597-169(470.1)

В. С. Мельник, А. А. Бессонов,

С. В. Мишопита

Полярный филиал Всероссийского научно-исследовательского института рыбного хозяйства и океанографии («ПИНРО» им. Н. М. Книповича), г. Мурманск, Россия melnikv@pinro.ru

РЕЗУЛЬТАТЫ МНОГОЛЕТНЕГО ПАРАЗИТОЛОГИЧЕСКОГО МОНИТОРИНГА ЗАРАЖЕННОСТИ МОНОГЕНЕЕЙ *GYRODACTYLUS SALARIS* МОЛОДИ АТЛАНТИЧЕСКОГО ЛОСОСЯ В РЕКАХ МУРМАНСКОЙ ОБЛАСТИ И РЕКИ КЕРЕТЬ (СЕВЕР КАРЕЛИИ)

Аннотация

В статье приводятся результаты паразитологических исследований атлантического лосося в реках Мурманской области и реке Кереть в 2009-2018 гг. Представлены данные по зараженности молоди атлантического лосося моногенеей *Gyrodactylus salaris* в реке Кереть.

Ключевые слова:

атлантический лосось, Gyrodactylus salaris, паразитология, мониторинг.

V. S. Melnik, A. A. Bessonov, S. V. Mishopita

Polar branch of VNIRO («PINRO» named after N. M. Knipovich), Murmansk, Russia *melnikv@pinro.ru*

THE RESULTS OF LONG-TERM PARASITOLOGICAL MONITORING OF *GYRODACTYLUS SALARIS* MONOGENEAN INFECTION IN JUVENILE ATLANTIC SALMON IN THE RIVERS OF THE MURMANSK REGION AND THE KERET RIVER (NORTH OF KARELIA)

Abstract

The article presents the results of parasitological studies of Atlantic salmon in rivers of the Murmansk region and the river Keret in 2009-2018. Presents data on the infestation of juvenile Atlantic salmon by monogenea *Gyrodactylus salaris* in the river Keret. Keywords:

Atlantic salmon, Gyrodactylus salaris, parasitology, monitoring.

Введение

Göran Malmberg с плавников и кожи молодого лосося из пресноводных вод Швеции. Плоский червь, относящийся к классу моногеней, небольших размеров, живородящий с прямым циклом развития без смены хозяев и чередования поколений [Шульман и др., 2001]. Он встречается на пресноводном лососе (Salmon salar morpha Sebago, Girard) и балтийском лососе (Salmon salar L.) в незначительных количествах и не оказывает губительного воздействия на рыбу и популяцию в целом. Всемирной организацией по охране здоровья животных гиродактелез признан особо опасным заболеванием молоди атлантического лосося. До последнего времени этот паразит не отмечался у североатлантической формы лосося Мурманской области.

Впервые *G. salaris* отмечен как патогенный для атлантического лосося в Норвегии в 1975 г., где он распространился на многие реки [Johnsen and Jensen, 1991]. В России эпизоотия гиродактелеза отмечена в лососевой реке Кереть бассейна Белого моря (Северная Карелия), где молодь атлантического лосося практически полностью погибла из-за заражения *G. salaris* [Иешко и Шульман 1994]. Наиболее вероятной причиной заноса данного паразита в несвойственные водоемы является проведение рыбоводных работ — зарыбление рек молодью лососевидных из различных районов. В тоже время распространение паразита может происходить не только в результате деятельности человека, но и естественным путем. Лососевидные рыбы такие как радужная форель, кумжа, голец, хариус и др. играют особую роль в распространении *G. salaris*, являясь его транспортным хозяином и не погибая при заражении этим паразитом.

С целью контроля за распространением моногенеи G. salaris в лососевых реках Мурманской области в 1993 г. Полярным институтом начат паразитологический мониторинг, по причине наличия вреда от G. salaris ряду популяций дикого лосося в соседних Финляндии и Норвегии, а также обнаружении данного паразита в 1992 г. в реке Кереть (Северная Карелия).

Материал и методы

Материалами послужили паразитологические и ихтиологические данные, собранные в реках Мурманской области в 2009-2018 гг. и реке Кереть в 2014—2018 гг., а также результаты паразитологических исследований радужной форели из рыбоводных хозяйств Нижнетуломского водохранилища. Объектами исследования являлись молодь атлантического лосося (Salmo salar L.) и радужная форель (Parasalmo mykiss Walb.).

Работы проводились ежегодно в пяти реках Мурманской области: Кола, Пак, Печа (баренцевоморский бассейн), Ковда, Канда (беломорский бассейн). После обнаружения моногенеи *Gyrodactylus* sp. на молоди атлантического лосося в 2015 г. в реке Пак Нижнетуломского водохранилища с 2017 года в программу мониторинга включены другие реки этого бассейна (реки Шовна, Пяйве) и однократно исследованы реки Кротовая и Конья в 2017 г. (рис. 1). В апреле–июле 2018 г. исследована радужная форель из трех форелевых

хозяйств Нижнетуломского водохранилища, а также с 2017 г. проведены исследования радужной форели-беглецов из садков рыбоводных хозяйств этого водохранилища.

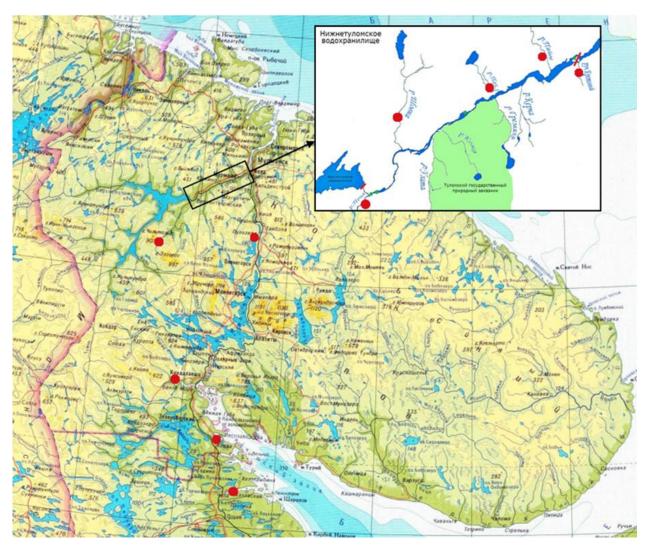


Рис. 1. Районы исследований в 2009-2018 гг. Fig. 1. Areas of research in 2009-2018

Мониторинг зараженности моногенеей *G. salaris* реки Кереть с 2011 г. проводится сотрудниками ПИНРО; молодь лосося отлавливается на порогах: Морской, Матвеевский, Колупаевский, Варницкий, Сухой (по две станции на каждый порог). С 2014 г. нами начаты исследования количественных показателей зараженности *G. salaris* молоди лосося в реке, до этого отмечался только факт наличия паразита. Исследования молоди лосося в реке Кереть проводили в сентябре, в остальных реках в июле–августе и с 2016 г. еще в октябре. Всего за рассматриваемый период исследовано 1396 экз. молоди атлантического лосося и 64 экз. радужной форели (табл. 1). Радужную форель в водохранилище для паразитологических исследований отлавливали жаберными сетями. Пробы молоди атлантического лосося отбирали при помощи электролова.

Сбор, фиксация и обработка паразитологического материала выполнены по общепринятым методикам [Донец и Шульман, 1973; Быховская-Павловская, 1985]. Показателями степени зараженности рыб служили экстенсивность инвазии — процент особей, зараженных паразитом от общего числа исследованных рыб; интенсивность заражения — количество паразитов, обнаруженных у зараженных рыб; индекс обилия — среднее число паразитов, приходящихся на одну исследованную рыбу в пробе [Беклемишев, 1970; Бреев, 1976; Parasitology meets ecology ..., 1997].

Таблица 1. Биологическая характеристика и количество исследованных рыб *Table 1.* Biological characteristics and number of fish studied

Водоем	Исследовано	Длина рыб, см		Масса рыб, г			
Водоем	рыб, экз.	мин. – макс.	средняя	мин. – макс.	средняя		
	Атлантический лосось (молодь)						
Р. Кола	281	3,3–18,2	7,7	0,3-71,2	7,9		
Р. Пак	275	2,2–15,7	6,9	0,2-38,6	5,3		
Р. Печа	241	3,6–13,2	6,2	0,4-28,0	3,7		
Р. Шовна	27	4,1–12,6	9,1	0,7–20,7	9,28		
Р. Пяйве	52	3,7–13,2	5,5	0,5–23,6	2,7		
Р. Конья	12	4,4–5,4	4,8	0,7–1,1	0,9		
Р. Кротовая	14	4,9–15,7	12,5	1,1–44,7	22,6		
Р. Канда	126	4,0–13,0	7,5	0,6–23,5	5,8		
Р. Ковда	216	3,9–16,2	7,5	0,9–66,5	8,6		
Р. Кереть	88	4,8–13,5	8,4	1,1–28,9	7,5		
Радужная форель							
Нижнетуломское	64	17,9-37,0	26,0	70,0-770,0	240,8		
водохранилище	04	1 / ,9-3 / ,0	20,0	70,0-770,0	Z 7 0,6		
Всего:	1396		·	·	·		

Результаты

Все эти годы мы получали отрицательный результат по наличию G. salaris в исследуемых реках Мурманской области.

В 2015 г. в реке Пак у молоди лосося впервые обнаружены паразитические черви рода *Gyrodactylus*, морфологически близкие к виду *G. salaris*. В августе и октябре 2016 г. они также были отмечены и собраны для дальнейших исследований. Показатели зараженности паразитом были выше осенью, это связано с холодолюбивостью *G. salaris*, выразившейся в сезонной динамике его численности (табл. 2).

Таблица 2. Количественные показатели зараженности моногенеей *G. salaris* молоди атлантического лосося реки Пак в 2015–2017 гг.

Table 2. Quantitative indicators of infection of monogenean G. salaris parr Atlantic salmon of the Pak River in 2015–2017

		Кол-во	Длина рыб, см	Показатели зараженности			
Год	Месяц	рыб,		Экстенсивность,	Интенсивность, экз.	Индекс обилия,	
		экз.	(средняя)	%	(мин макс.)	экз.	
2015	Июль	30	3,6–12,6(7,3)	36,7	1–127	4,9	
2016	Июль	18	6,4–12,0(9,6)	11,1	2–2	0,2	
2010	Октябрь	11	5,4–12,3(9,9)	100	1–140	46,8	
	Май	4	5,5-9,8(8,2)	0	0	0	
2017	Июнь	10	3,0-10,7(6,3)	50	1–33	7,2	
	Август	10	3,7,2(4,9)	50	1–34	4,8	
	Октябрь	15	4,5–12,1(7,9)	100	9–899	125,1	

В 2017 г. в этой реке у молодя лосося отмечена очень сильная инвазия данным паразитом (экстенсивность составила 64,1 при индексе обилия 51,2). Однако в июле и октябре 2018 г. паразит в этой реке не был обнаружен, что может быть связано с продолжительно аномально высокой температурой воды в летний сезон.

В 2017 г. в ходе дополнительных исследований рек бассейна Нижнетуломского водохранилища моногении рода *Gyrodactylus* обнаружены на молоди атлантического лосося впервые в реке Шовна: экстенсивность инвазии составила 71,4 %, интенсивность 1–347 экз.

при индексе обилия 60,7, что свидетельствует о распространении паразита в этом водоеме. В 2018 г. паразит также отмечен в этой реке, но с меньшей инвазией (табл. 3).

Таблица 3. Количественные показатели зараженности моногенеей *G. salaris* молоди атлантического лосося реки Шовна

Table 3. Quantitative indicators of infection of monogenean G. salaris parr Atlantic salmon of the Shovna River

		Пинио выб ом	Показатели зараженности			
Год	Месяц	Кол-во рыб	Длина рыб, см мин макс. (средняя)	экстенсивность, %	интенсивность, экз. (мин макс.)	индекс обилия, экз.
2017	Октябрь	7	5,7-13,0(10,8)	71,4	1–347	60,7
2018	Июль	5	4,1–12,2(7,6)	0	0	0
2018	Октябрь	15	6,3–12,6(9,6)	33,3	1–8	1,3

В ходе мониторинга реки Кереть установлено, что уровень инвазии *G. salaris* молоди атлантического лосося остается на высоком уровне. В 2014 и 2015 гг. отмечалась очень высокая инвазия, но в 2014 г. не вся молодь была заражена (экстенсивность инвазии составила 58 %). В 2016 г. молодь отловлена и исследована только на пороге Сухой. В 2017 экстенсивность заражения составила 100 % при индексе обилия 364,4. В 2018 году отловлено 25 экз. молоди лосося на различных порогах и паразит на них не обнаружен, что, вероятно, обусловлено высокой температурой воды в летний сезон этого года. Такая же картина наблюдалась в 2004 году, когда при высоких летних температурах воды паразит не был обнаружен.

Таблица 4. Количественные показатели зараженности моногенеей *G. salaris* молоди атлантического лосося реки Кереть

Table 4. Quantitative indicators of infection of monogenean G. salaris parr of Atlantic salmon of the Keret River

LΩΠ	Кол-во рыб, экз.	Длина рыб, см мин макс. (средняя)	Показатели зараженности			
			экстенсивность, %	интенсивность, экз. (мин макс.)	индекс обилия, экз.	
2014	31	6,0-12,9(8,03)	58	4->1000	>118	
2015	11	4,8–13,2(9,2)	100	62->1000	>900	
2016	12	5,6–12,6(8,5)	100	17–1083	164.1	
2017	9	9,3–13,5(11,8)	100	5–2317	364.6	
2018	25	5,7-13,3(8,7)	0	0	0	

На сегодняшний день молодь лосося, исследуемая ежегодно в реках Кола, Печа, Канда, Ковда, а также однократно исследованная в реках Пяйве, Кротовая и Конья, по нашим данным, остается свободной от этого паразита (табл. 5).

Из трех исследованных в 2018 г. рыбоводных хозяйств Нижнетуломского водохранилища, только на одном не были обнаружены моногенеи рода *Gyrodactylus*. На других отмечена высокая инвазия паразитом; экстенсивность инвазии составила 82,4 % и 60,0 % при индексах обилия 36,9 и 10,3 соответственно. При исследовании 27 экз. радужной форелибеглецов из садков обнаружен один экземпляр моногенеи рода *Gyrodactylus*. Наличие паразитов в рыбоводных хозяйствах и на форели-беглецах служит вероятной причиной заражения диких популяций атлантического лосося притоков Нижнетуломского водохранилища.

Таблица 5. Результаты паразитологического мониторинга гиродактилеза молоди атлантического лосося в реках Мурманской области и реке Кереть (Республика Карелия) Table 5. Results of parasitological monitoring of gyrodactylosis of Atlantic salmon parr in the rivers of Murmansk region and the Keret River (Republic of Karelia)

Река	Годы исследований	Наличие <i>Gyrodactylus</i> sp.			
Реки бассейна Баренцева моря					
Печа	1996, 2005, 2007, 2009–2018	Не обнаружен			
Пак	1996, 2005, 2007–2018	Обнаружен в 2015, 2016, 2017 г.			
Кола	2005–2018	Не обнаружен			
Шовна	1996, 2017–2018	Обнаружен в 2017, 2018 г.			
Пяйве	2017–2018	Не обнаружен			
Конья	2017	Не обнаружен			
Кротовая	2017	Не обнаружен			
Реки бассейна Белого моря					
Канда	1996–1998, 2006–2018	Не обнаружен			
Ковда	1996–1998, 2007, 2009–2018	Не обнаружен			
Кереть	2011–2018	Обнаружен, кроме 2018 г.			

Заключение

Результаты регулярных паразитологических исследований молоди атлантического лосося реки Кереть свидетельствуют о падении численности паразита *G. salaris*. В ходе мониторинга зараженности моногенеей *G. salaris* установлено, что в реках Пак и Шовна (бассейн Нижнетуломского водохранилища) после первичного обнаружения в 2015 г. и до настоящего времени паразит на молоди атлантического лосося регистрируется постоянно, но с различными показателями зараженности. Исключением стал 2018 г. с аномально теплыми температурами воды в водоемах в летний период, когда паразит не был обнаружен в реках Пак и Кереть. Уменьшение зараженности предположительно происходит на фоне уменьшения численности лосося и высокой летней температуры.

Таким образом, в реках Пак, Шовна и Кереть сохраняется инвазия моногенеей *G. salaris* молоди атлантического лосося и только при высоких летних температурах воды в отдельные годы количественные показатели зараженности могут значительно снижаться. В остальных исследованных реках Мурманской области паразит не обнаружен.

В связи с полученными данными необходимо отметить, что популяция атлантического лосося Нижнетуломского водохранилища требует постоянного паразитологического мониторинга и реализации мер по борьбе с этим губительным для его молоди заболеванием.

Литература

Беклемишев В. Н. Биоценологические основы сравнительной паразитологии. М.: Наука, 1970. С. 143–154.

Бреев К. А. Применение математических методов в паразитологии // Изв. ГосНИОРХ. 1976. Т. 105. С. 109-126.

Быховская-Павловская И. Е. Паразиты рыб. Руководство по изучению. Л.: Наука, 1985. 120 с.

Донец 3. С., Шульман С. С. О методах исследований Myxosporidia (Protozoa, Cnidosporidia) // Паразитология. 1973. Т. 7, вып. 2. С. 191–192.

Иешко Е. П., Шульман Б. С. Паразитофауна молоди семги некоторых рек Карельского побережья Белого моря // Экологическая паразитология. Петрозаводск, 1994. С. 45–53.

Шульман Б. С., Щуров И. Л., Иешко И. П., Широков В. А. Влияние *Gyrodactylus salaris* Malmberg, 1957 (Monogenea: Gyrodactylidae) на популяцию атлантического лосося (*Salmo salar*) в реке Кереть и возможные меры борьбы с ним // Эколого-паразитологические исследования животных и растений европейского Севера. Петрозаводск, 2001. С. 40–48.

Johnsen B. O., Jensen A. J. The Gyrodactylus story in Norway // Aquaculture. 1991.V. 98. P. 289–302.

Parasitology meets ecology on its own terms: Margolis et al. revisited / A. Bush, K. Lafferty, J. Lotz, A. Shostak // Journal of Parasitology. 1997. V. 83, iss 4. P. 575–583.