МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФГБОУ ВО «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ им. Н.И. ВАВИЛОВА»

IV Национальная научно-практическая конференция

СОСТОЯНИЕ И ПУТИ РАЗВИТИЯ АКВАКУЛЬТУРЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ

УДК 639.3:639.5 ББК 47.2 С23

Редакционная коллегия: Васильев А.А., Кузнецов М.Ю., Сивохина Л.А., Поддубная И.В.

Состояние и пути развития аквакультуры в Российской Федерации: материалы IV национальной научно-практической конференции, Калининград — 8-10 октября 2019 г./ под ред. А.А. Васильева; Саратовский ГАУ. — Саратов: Амирит, 2019.-267 с.

ISBN 978-5-00140-341-8

В сборнике материалов IV национальной научно-практической конференции приводятся результаты исследования по актуальным проблемам аквакультуры, в рамках решения вопросов продовольственной безопасности, ресурсосберегающих технологий производства рыбной продукции и импортозамещения. Для научных и практических работников, аспирантов и обучающихся по укрупненной группе специальностей и направлений подготовки 35.00.00 сельское, лесное и рыбное хозяйство.

Статьи даны в авторской редакции в соответствии с представленным оригинал-макетом.

Сборник подготовлен и издан при финансовой поддержке ООО «Научно-производственное объединение «Собский рыбоводный завод»» Генеральный директор Д. Ю. Эльтеков

РАЗРАБОТКА МЕТОДА ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ВИРУСА ГЕМОРРАГИЧЕСКОЙ СЕПТИЦЕМИИ

В.А. ПЫЛЬНОВ, Л.И. БЫЧКОВА, И.В. БУРЛАЧЕНКО, И.В. ЯХОНТОВА

V.A. Pylnov, L.I. Bychkova, I.V. Burlachenko, I.V. Yahontova

Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии (ФГБНУ «ВНИРО»)

Russian Federal Research institute of fisheries and oceanography (FSBSI «VNIRO»)

Аннотация. Предложена разработка метода диагностики вируса геморрагической септицемии лососевых рыб с использованием прямой реакции иммунофлуоресценции. Для разработки метода проведена очистка вируса ВГС, иммунизация животных. Получены гипериммунные сыворотки.

Abstract. A method of diagnostic the virus of hemorrhagic septicaemia of salmon fish using a direct reaction of immunofluorescence has been proposed. To develop the method, the VHS virus was purification and animals were immunized. Hyperimmune serums have been obtained.

Ключевые слова: ВГС –вирус геморрагической септицемии, РИФ – реакция иммунофлуоресценции, гипериммунные сыворотки.

Key words: VHS – virus of haemorrhagic septicaemia, RIF – reaction of immunofluorescens, immune serums.

Болезнь радужной форели и лососевых, сопровождающаяся септическими процессами, была впервые установлена в 1962 году в Дании, в форелеводческих хозяйствах. В 80-х гг. XX века болезнь регистрировали на всей европейской территории. В настоящее время вспышки вирусной геморрагической септицемии (ВГС) фиксируют в Европе, Америке и Азии. За последние 10 лет 2009-2019 гг. в мире по официальным данным Международной Организации Защиты Здоровья Животных (МЭБ) неблагополучными в отношении ВГС являлись 20 стран, среди которых 16 европейских [6].

Јепѕеп в 1965г. впервые выделил вирус ВГС на перевиваемой клеточной линии RTG-2 (гонады радужной форели) и назвал его Egtved-virus в честь города Эгтвед в Дании, вблизи которого была расположена форелевая ферма, неблагополучная по ВГС [4]. Инфекционный агент — РНК-содержащий вирус, который классифицируют как представитель семейства Rhabdoviridae.

Основные методы диагностики вирусной геморрагической септицемии (ВГС) изложены в Сборнике инструкций по борьбе с болезнями рыб [2]. Однако, в настоящее время установлено наличие 3-х генотипов вируса ВГС. Выявлено, что изоляты ВГС морского происхождения, по сравнению с пресноводными

изолятами, обладают низкой патогенностью для форели и не представляют большого риска для лососевых, культивируемых на фермах. Пресноводные изоляты ВГС наиболее патогенны [3]. Рутинные диагностические методы не позволяют различать изоляты морского и пресноводного происхождения. Сыворотки, полученные к вирусу ВГС, нейтрализуют изоляты ВГС независимо определённого помощью серотипа, c моноклональных поликлональных антител млекопитающих. Пока нет достаточных средств для серологической диагностики, которые позволяли бы дифференцировать морские и пресноводные изоляты вируса ВГС. К тому же Lorenzen [5] и Bearzotti [3] в своих работах указывают, что эпитопы нейтрализации на белке G вируса ВГС при температуре 22 °C меняют свою конформационную структуру и поэтому трудно при классических способах иммунизации получить антисыворотки, чтобы избежать перекрестной нейтрализации между серогруппами вируса ВГС. Вот почему для идентификации штаммов вируса ВГС используется ПЦРсеквенирование, с помощью которого установлено 3 генотипа изолятов ВГС, циркулирующих в различных географических регионах.

В России вспышки ВГС зафиксированы в 2012 г. на территории Республики Карелия [1]. Выделение вируса сопряжено с определёнными трудностями, так как в лабораторных условиях культивирование ВГС возможно только на клеточных линиях рыб ЕРС (из эпителиомы карпа), RTG-2 (клетки гонад радужной форели), ВF-2 и других при соблюдении определённого температурного режима и протокола состава питательной среды для культуры клеток рыб.

В настоящей работе представлены данные по наработке вируса ВГС, очистке и концентрированию, иммунизации кроликов, получению антисывороток и проверки их активности.

Материалы и методы. Вирус ВГС культивировали на клеточных линиях рыб: 1) EPC (из эпителиомы карпа); 2) BF-2 (хвостовой стебель синежаберного солнечника Lemopis machochirus); 3) RTG-2 (гонады радужной форели). Клеточные линии рыб выращивали на различных питательных средах и исследовали их рост на среде ПСП (полусинтетическая питательная), среде Игла с двойным набором аминокислот и витаминов (DMEM «SERVA») и на среде Игла с 10 % эмбриональной сывороткой КРС. Культуры клеток выращивали в 75 см³ пластиковых матрасах фирмы «Nunc». Вирус в монослое культивировали Подготавливали клеточный монослой следующим методом. концентрация 200-300 тыс. клеток/мл). Ростовая среда содержала 10 % эмбриональной сыворотки КРС, глутамин и антибиотик. Сформированный клеточный монослой (2 суток) инфицировали вирусом ВГС с конечной концентрацией вирионов 50-100 тыс./мл. Культивировали в охлаждающем термостате при 14 °C до 7 дней (ЦПД 80-100 %). После этого матрасы с вируссодержащим материалом замораживали при температуре минус 20 °C, затем оттаивали и использовали для последующих пассажей. Титр вируса определяли на 7-10-й день после заражения культуры клеток с использованием культуральных микропланшетов; расчёт вели по методу Рида и Менча и выражали в тканевых цитопатогенных дозах в 1 мл (ТЦД _{50/мл}).

Очистку вируса проводили по следующей схеме: вирусную суспензию замораживали и оттаивали, вносили NaCl до 3 %, осветляли центрифугированием при 3000 об/мин 10 мин; вносили ПЭГ-6000 до 6-8 % и после инкубации осаждали вирус центрифугированием при 8000 об/мин. за 30 мин.; осадок ресуспендировали в буфере STE и наносили на сахарозную подушку, после чего центрифугировали при 22000 об/мин. в течение 1,5-2 часов; полученный осадок ресуспендировали в буфере STE и центрифугировали в градиенте CsCI при 23000 об/мин в течении 2-х часов. Полученный элюат вируса подвергали диализу против буфера STE.

Гипериммунные сыворотки против вируса ВГС получали на кроликах массой 2,0-3,0 кг и морских свинках массой 400-500 г. Вирусный антиген для иммунизации готовили с полным (ПАФ) и неполным адъювантом Фрейнда (НАФ) в соотношении 1:1. Для иммунизации использовали вирус с титром 7,85 LgTЦД $_{50/мл}$ по схеме: 1-я инъекция в подушечки лап задних конечностей по 0,1 мл эмульсии с ПАФ в каждый палец; 2-я инъекция через 42 дня внутримышечно в бедро задних конечностей по 0,5 мл эмульсии с НАФ. После проверки уровня специфических антител в сыворотке крови животных по необходимости иммунизировали в 3-й раз спустя 10-14 дней. Морских свинок иммунизировали по той же схеме, но антиген вводили только внутримышечно в дозе 0,5 мл эмульсии.

Контроль наличия вируса в культуральной суспензии осуществляли регулярным микроскопированием и с помощью ПЦР. Постановку непрямого варианта ИФА(H-ИФА) осуществляли по общепринятой схеме.

Результаты исследований и обсуждение. В данной работе использовали 3 клеточные линии рыб. Результаты исследования по адаптации 3-х клеточных линий рыб к питательным средам Игла, ПСП, ДМЕМ приведены в таблице 1. Использование указанных питательных сред позволяло поддерживать культуры клеток в течение 5 пассажей и более. Установлено, что наиболее приемлемой для культивирования исследованных клеточных линий является среда Игла с двойным набором аминокислот и витаминов (DMEM «SERVA»), которая в отличие от среды Игла и ПСП имеет в составе двойной набор аминокислот и витаминов. Среда ДМЕМ обеспечивала лучший, по сравнению с другими средами, рост клеток.

В результате проведённых исследований показана возможность использования питательной среды ДМЕМ, включающей 10 % эмбриональной сыворотки КРС для культивирования клеточных линий рыб.

Согласно литературным данным наиболее чувствительной линией клеток для выделения и культивирования вируса ВГС является линия клеток ВF-2 [7], хотя также пригодны и линии клеток CHSE-214, EPC, FHM, RTG-2 [8]. Однако накопление вируса, несмотря на хорошую чувствительность, может отличаться в зависимости от использования конкретной клеточной линии рыб. В настоящем исследовании было выявлено, что линия клеток ВF-2 показала наибольшую

чувствительность к вирусу ВГС и самый высокий титр инфекционности по сравнению с другими клеточными линиями. Температура репродукции вируса в клетках ВF-2 поддерживалась в пределах 14 °С. Определено, что на клеточной линии BF-2 идёт наибольшее вируснакопление в количествах, необходимых для получения очищенных и концентрированных препаратов вируса.

Таблица 1. - Оценка пригодности культуральных сред для поддержания роста клеточных линий рыб

	№	Клеточная линия	Культуральные среды		
			Среда Игла с 10% эмб.сыворотк.	Среда ПСП с 10% эмб.сыворотк.	Среда ДМЕМ с 10% эмб.сыворотк.
	1.	EPC	+++	++++	++++
	3.	RTG-2	-	-	++++
	4.	BF-2	-	+++	++++

Примечания:

(++++) - среда обеспечивает оптимальные условия для роста культур клеток

(+++) - среда обеспечивает хорошие условия роста культур клеток

(+/-) - среда обеспечивает условия для роста культуры клеток со скоростью в несколько раз ниже, чем на оптимальной

(-) - культура клеток не растёт или только 1 пассаж.

Для получения осажденных препаратов вируса провели наработку вирусного материала на культуре клеток BF-2, последующую очистку и концентрирование. В ходе проведенных исследований была проведена очистка и концентрирование трёх объемов культуральной вирусной суспензии ВГС. Проведено титрование полученных элюатов на культуре клеток ЕРС, RTG-2 и ВF-2. Полученные результаты после очистки и концентрирования вируса ВГС показали, что чем больше объём суспензии вируса и чем выше титр, тем выше титр вируса после концентрирования, а значит, вероятно, и выше накопление вирусного белка в полученных элюатах. В результате проведённых исследований отработан один из способов очистки вируса ВГС с использованием сахарозной подушки. Получены элюаты с определёнными титрами вирусной активности от 4,5 до 7,85 lgTЦД50/см³.

результате предложенной схемы иммунизации были получены антисыворотки, специфическая активность которых была проверена в непрямом варианте иммуноферментного анализа н (ИФА). Активность гипериммунных сывороток крови как кроликов, так и морских свинок, в непрямом варианте н (ИФА) после второй иммунизации была на уровне 1:40000 – 1:62500, после третьей – 1:312500. Таким образом, гипериммунные сыворотки кроликов и морских свинок, проверенные в н(ИФА), имели максимальные и стабильные титры 1:312500. Показатели полученных титров – достаточные для изучения возможности использования антисывороток при разработке метода детекции геморрагической септицемии $(B\Gamma C)$ помощью различных вируса серологических реакций.

Выводы. В результате проведённых исследований показана возможность использования среды ДМЕМ для культивирования клеточных линий рыб.

Определено, что на клеточной линии BF-2 идёт наибольшее вирусонакопление в количествах, необходимых для получения очищенных и концентрированных препаратов с целью иммунизации кроликов. Отработаны способы иммунизации кроликов и морских свинок для получения гипериммунных сывороток крови, которые можно использовать для разработки непрямого варианта ИФА при выявлении ВГС-специфических антител с использованием нативного культурального вируса ВГС, а также при дальнейшей очистке и мечении антисывороток в реакции иммунофлуоресценции и в реакции нейтрализации.

Список литературы:

- 1. Пыльнов В.А Вирусвыделение возбудителя вирусной геморрагической септицемии лососевых / В.А. Пыльнов, Н.В. Мороз, С.С. Рыбаков, Д.К. Павлов, А.Е. Метлин, А.А. Егоров // XXIX международная конференция «Биологические ресурсы Белого моря и внутренних водоёмов Европейского Севера» г.Мурманск, 27-30 марта 2013г. Сборник статей.
- 2. Сборник инструкций по борьбе с болезнями рыб. М.: Отдел маркетинга АМБ-агро, 1998. 310 с.
- 3.Bearzotti M. The glycoprotein of viral haemorrhagic septicaemia virus (VHSV): antigenicity and role in virulence. / M. Bearzotti, A.F. Monnier, P. Vende [et al] // Vet. Res. -1995. Vol. 26. P. 413 422.
- 4. Jensen M.H. Research on the virus Egtved disease./ M.H. Jensen// Ann. N.Y. Acad.Scien. 1965. Vol.126. P. 422 426.
- 5. Lorenzen N., Olesen N.J., Jorgensen P.E.V. Neutralization of Egtved virus pathogenicity to cell cultures and fish by monoclonal antibodies to the viral G protein./ N.Lorenzen, N.J.Olesen, P.E.V. Jorgensen // J.Gen. Virol.71. 1990. P. 561 567.
 - 6. OIE.net
- 7 Olesen N.J., Jorgensen P.E.V. Detection of neutralizing antibody to Egtved virus in rainbow trout (Salmo gairdneri) by plaque neutralization test with complement addition./ N.J.Olesen, P.E.V. Jorgensen // J.Appl. Icht. 1992. Vol.1. P. 33 41.
- 8. Wolf K. Viral haemorrhagic septicaemia in fish viruses and fish viral diseases./ Wolf K. // Cornell Univ.Press.Ithaca.NY. 1988. P. 217 249.