1 4 AEK 1998

Киянова Елена Викторовна

ФИЗИОЛОГО-БИОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА МОЛОДИ РУССКОГО ОСЕТРА ПРИ ВВЕДЕНИИ В РАЦИОН КОРМОВЫХ АНТИБИОТИКОВ, ЭУБИОТИКОВ И АНТИОКСИДАНТОВ

06.02.05. - Физиология, биохимия и биотехностогия сельскохозяйственных животных

Автореферат диссертации на соискание ученой степени кандидата биологических наук

E Buff

Ростов-на-Дону. 1998

Работа выполнена в лаборатории интенсивных биотехнологий Азовского НИМ рыбного хозяйства

Научный руководитель - доктор биологических наук, старший научный сотрудник Абросимова Н.А.

Официальные оппоненты: доктор биологических наук, профессор Пономарев С.В.

кандидат биологических наук, Усенко В.В.

Ведущее предприятие - Краснодарский НИИ рыбного хозяйства

Защита состоится "18" ДЭКАБОО на заседании диссертационного совета К 12.23.08. Кубанского государственного аграрного университета в 9 часов в ком. 115 (зоофак).

С диссертацией можно ознакомиться в библиотеке университета по адресу: 350044, Краснодар, ул. Калинина, 13
Автореферат разослан "16" НООБЛЯ 1998 г.

Ученый секретарь диссертационного совета,

к. с.-х. н., доцент

Баюров Л.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В условиях Азовского района, после зарегулирования рек Дона и Кубани, при все возрастающем изъятии пресного стока практически единственным источником регулярного пополнения моря молодью осетровых является их искусственное воспроизводство (Баранникова, 1979, 1983; Баландина, 1983; Горбачева и др., 1983; Воловик и др., 1995). Поэтому при выращивании на рыбоводных заводах особое внимание должно уделяться не только количеству, но и качеству молоди, ее физиологической полноценности и высокой адаптационной пластичности.

В последнее время все большее значение придается разведению рыб индустриальными методами, характерной особенностью которых является практически полное отсутствие естественных кормовых организмов. Несмотря на достигнутые значительные успехи в создании различных стартовых комбикормов, способных заменить живой корм, повышение жизнестойкости личинок и мальков осетровых рыб остается актуальной задачей (Ноякшева, 1982: Бондаренко и др. 1984: Щербина и др., 1985; Абросимова и др., 1989). Это объясняется тем, что при разработке искусственных рационов главное внимание уделялось их сбалансированности по основным структурным элементам питания в меньшей степени, витаминам. Однако естественная пища содержит более широкий набор биологически активных компонентов, являющихся регуляторами многих метаболических процессов Следовательно, помимо баланса основных питательных веществ в пище для выращивания физиологически полноценной молоди важное значение имеют биологически активные век числу которых относятся антибиотики, эубиотики и антиоксиданты.

Известно, что антибиотики и зубиотики постоянно и в различных количествах находятся в тканях и органах животных и растений (Таранов, Сабиров, 1987). Они выполняют важную роль в защите организма от различных болезней и регулируют равновесие кишечной микрофлоры. Установлено, что биохимический состав и физиологическое состояние рыб в значительной степени зависит от качества липидов корма (Сидоров, 1987). Окисленные жиры способствуют патологическим изменениям липидного обмена, накоплению в организме продуктов перекисного окисления липидов, снижению уровня естественных антиоксидантов и, в целом, ухудшению физиологического состояния. С целью

предохранения от липидной порчи в комбикорма или отдельные ингредиенты вводят сантахин, ионол и другие антиокислители. Однако, эти препараты физиологически недостаточно адекватны организму рыб. В этой связи поиск новых препаратов остается одной из важнейших задач в области физиологии питания рыб.

Немногочисленные опыты в рыбоводстве по использованию антибиотиков и антиоксидантов в составе комбикормов дали положительные результаты (Маликова, 1984; Шмаков, 1991; Абросимова, Киянова, 1992; Абросимова, Бирюкова, 1996; Киянова, 1997; Касумян, 1997). Однако, остается не ясным влияние этих биологически активных веществ на организм рыб. Особую актуальность представляет изучение характера воздействия антибиотиков, эубиотиков и антиоксидантов на рост и физиологическое состояние молоди осетра, содержащейся в специфических условиях бассейновых цехов рыбоводных заводов при повышенных плотностях и стрессовых нагрузок.

<u>Цель и задачи исследований.</u> Целью настоящей работы является физиолого-биохимическое и биологическое обоснование использования в стартовых комбикормах для осетра кормовых антибиотиков витамицина и кормогризина, эубиотика лактобактерина и нового антиоксиданта анфелана. Для достижения этой цели необходимо было решить ряд конкретных задач:

- изучить воздействие витамицина и кормогризина на обмен веществ и утилизацию основных питательных веществ кормов молодью осетра ;
- оценить влияние витамицина и кормогризина на физиологическое состояние молоди осетра;
- оценить влияние лактобактерина на рост и физиологическое состояние молоди осетра;
- оценить влияние анфелана на рост и физиологическое состояние молоди осетра;
- оценить влияние анфелана на интенсивность перекисного окисления липидов в организме молоди осетра.

<u>Научная новизна</u>. Впервые дана оценка влияния кормовых антибиотиков витамицина и кормогризина, эубиотика лактобактерина и нового антиоксиданта анфелана на рост, развитие и физиологическое состояние молоди осетра.

Установлено, что характер воздействия кормовых антибиотиков зависит от структуры и фармакологического действия препарата, а также от его дозы в рационе. Определено, что

оптимальным в физиологическом плане является композиция витамицин+кормогризин в количестве 0,2 и 2 мг активного вещества на 1 кг корма соответственно, которая способствует повышению активности пепсина, трипсина, амилазы и переваримости органической фракции корма, а также темпу роста, выживаемости и физиологической питательности искусственных кормов.

Впервые показано, что введение в стартовый комбикорм для молоди осетра лактобактерина в количестве 0,2% от массы корма способствует наиболее благоприятному развитию в пищеварительном тракте молочно-кислых бактерий, являющихся облигатными для многих видов рыб, и улучшению липидного статуса молоди.

Впервые определено, что анфелан способствует снижению интенсивности перекисного окисления липидов в организме молоди осетра, о чем свидетельствуют снижение в липидах величины W6/W3, снижение содержания продуктов перекисного окисления липидов в печени и мышцах и повышение содержания различных показателей антиоксидантной системы организма. Сделаш важный вывод о применении анфелана при нарушении процессов свободно радикального окисления в организме молоди осетровых.

Практическая значимость работы заключается в повышении эффективности выращивания молоди осетра за счет обогащения комбикормов комплексом витамицин+кормогризин, лактобактерином и анфеланом. Кроме биологического эффекта, который оказывают предлагаемые препараты в соответствующих количествах, что выражается в повышении темпа роста, выживаемости и улучшении физиологического состояния рыб отмечен экономический эффект. Доказано, что анфелан может применяться в качестве лечебного и профилактического препарата при нарушении свободно-радикальных процессов в организме молоди осетровых.

Апробация работи. Основные материалы диссертации представлены и обсуждены на межлабораторных коллоквиумах и Ученом Совете АзнииРХ, первой международной конференции "Биологические ресурсы Каспийского моря" (Астрахань, 1992), Первом Конгрессе ихтиологов России (Астрахань, 1997), совещании по воспроизводству рыбных запасов (Ростов-на-Дону, 1998), региональных семинарах по вопросам аквакультуры (Ростов-на-Дону, 1995, 1997; Азов, 1996).

Производственные испытания стартовых комбикормов с различными биологически активными веществами проведены на рыбоводных заводах Ростовской области.

Публикации. По теме диссертации опубликовано 3 работы. Объем и структура диссертации. Диссертация изложена на 132 страницах машинописного текста, состоит из введения, обзора литературы, описания материалов и методики, результатов опытов и их обсуждения, заключения, выводов, практических рекомендаций, списка литературы и приложения. Текст иллюстрирован 30 таблицами и 12 рисунками. Список литературы включает 154 работы, в т.ч. 25 на иностранном языке.

ОБЗОР ЛИТЕРАТУРЫ

В главе представлена сводка литературных данных о биологической функции антибиотиков, эубиотиков и антиоксидантов, показано их значение в жизни сельскохозяйственных животных и рыб. Даны современные представления о свободно-радикальном окислении, в т.ч. перекисном окислении липидов, в
организме животных и кормах. Представлены сведения об отрицательном влиянии продуктов перекисного окисления липидов на
организм рыб. Обобщены литературные данные о путях снижения
активности перекисного окисления липидов в организме рыб и
кормах за счет введения в рацион таких биологически активных
веществ, как антибиотики, эубиотики и антиоксиданты.

МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИЙ

Экспериментальные работы, производственные испытания, химическая и камеральная обработка проб выполнены в 1991-1997 г.г. Работы проводились на осетровых заводах Ростовской области. Молодь выращивали в пластиковых бассейнах ИЦА-2, согласно разработанными нами оптимальными плотностями посадок рыб (Белов, Киянова, 1990). Технология содержания на всех вариантах опытов была идентична и в соответствии с инструкцией (Абросимова и др., 1989). Условия водной среды на всех этапах были близки к оптимальным.

Эффективность витамицина и кормогризина изучали в составе двух диет. Данные препараты вводили в рацион в количестве 0,2, 0,4 и 0,6 г, а также их композицию по 0,4 г на 1

кг корма.

Для изучения влияния лактобактерина на рост, биохимический состав, физиологическое состояние и формирование кишечной микрофлоры у молоди осетра исследовано 3 дозы препарата - 0,2, 0,4 и 0,6% от массы корма.

Для оценки влияния анфелана на рост, биохимический состав, физиологическое состояние молоди осетра и на процессы перекисного окисления липидов в организме рыб использовали рыбную муку, стабилизированную анфеланом, в контроле - стабилизированную ионолом.

При физиологической оценке исследуемых препаратов использовали комплекс рыбоводно-биологических и физиолого-биохимических методов.

Скорость роста, выживаемость, упитанность, затраты корсодержание основных групп органических и минеральных веществ и энергии в теле молоди осетра, эффективность использования протеина (ЭИП) и энергии (ЭИЭ) на рост рыб определяли методами, рекомендованными М. А. Щербиной (1983). Переорганических веществ определяли методом бихроматной окисляемости (Остапеня, 1964), активность пищеварительных пепсина - по методу Ансона, трипсина - по Кунтцу (Щеклик и др., 1966), амилазы - методом Каравея (Меньшиков и 1987). Липиды выделяли по Фолчу (Folch et al., 1957) и разделяли на классы методом тонкослойной хроматографии 1965), используя в качестве сорбента закрепленный (Шталь. слой силикагеля "LS 5/40 м" (Chemapol) с добавлением 13% гипса. Жирнокислотный спектр общих липидов и фосфолипидов определяли методом газовой хроматографии на хроматографе "Цвет-5". В качестве метчиков использовали стандартные смеси метиловых эфиров жирных кислот - "Sigma-189-1" "Sigma-189-6".

Уровень первичных продуктов перекисного окисления липидов — диеновых конъюгатов оценивали по характерному для них
ультрафиолетовому спектру поглощения на спектрофотометре
"Hitachi", малонового диальдегида — по методу Э.Н.Коробейниковой (1989), оснований Шиффа — по спектрам флюоресценции
липидов на спектрофотометре "Hitachi". Определение активности супероксиддисмутазы в тканях молоди осетра проводили гидроксиламиновым методом (Yasuhira Kono, 1983), L-токоферола —
флуорометрическим методом (Taylor et al, 1980), витамина А —

колориметрическим методом (Carr, Prince, 1926), тиамина (витамин B_1) - флуорометрическим методом (Jnsen, 1936), рибофлавина (витамин B_2) - методом прямой флуорометрии (Поволоцкая и др., 1955; Peason, 1967), витамина С - титриметрическим методом (Tillman et al, 1932).

Для определения микрофлоры кишечников осетра руководствовались общепринятыми методиками (Краюхин, 1963; Matteis, 1964; Родина, 1965). При исследовании использовали метод смешанных проб (Richter-Otto, Fehrmann, 1956). Выявляли следующие физиологические группы бактерий: минерализующие белки, амилолитические, молочнокислые, целлюлозолитические, актиномицеты, плесневые грибы, дрожжи.

. Всего было испытано 16 вариантов комбикормов. В рыбоводно-биологических анализах использовано около 8 000 шт. личинок и мальков рыб. Проведено 477 биохимических определений и 56 микробиологических.

При статистической обработке полученных данных использовали стандартные методы (Лакин, 1990).

БИОЛОГИЧЕСКАЯ И ФИЗИОЛОГИЧЕСКАЯ ОЦЕНКА ИСПОЛЬЗОВАНИЯ ВИТАМИЦИНА И КОРМОГРИЗИНА В СОСТАВЕ КОМБИКОРМОВ ДЛЯ МОЛОЛИ РУССКОГО ОСЕТРА

Характеристика комбикормов, витамицина и кормогризина

В качестве базового комбикорма использовали 2 диеты - К1 и К2, которые отличались набором компонентов и химичес-ким составом. По сравнению с диетой К1 в диете К2 содержание протеина было выше на 22,3 %, а содержание углеводов и минеральных веществ — ниже соответственно на 13,8% и в 1,5 раза. Валовая энергия диет существенно не отличалась — 17,0-18,3 МДж/кг.

Витамицин представляет собой высушенную культуральную жидкость гриба Актиномицес ауреовертицеллатус. Действующее начало — витамицин А, производное пиррил дипиррилметена. В опытах использовали витамицин А-0,5 с содержанием активного вещества 0,5 г на 1 кг препарата.

Кормогризин представляет собой высушенную биомассу лучистого гриба Стрептомицес гризеус. Активная фракция - гризин, относящаяся к группе стрептоотрициновых антибиотиков. В

опытах использовали кормогризин - 5 с содержанием гризина 5 г на 1 кг препарата.

Рыбоводно-биологические результаты выращивания молоди осетра на опытных комбикормах

Кормление личинок осетра начинали при переходе их на активное питание. Выращивание проводили в течение 35 суток.

В результате исследований выявлено, что витамицин и кормогризин в составе комбикорма в количестве по 0,2, 0,4 и 0,6 г на 1 кг корма способствует увеличению приростов молоди осетра на 14-30,9%, выживаемости — до 11% при снижении кормовых затрат на единицу прироста рыб от 0,2 до 1,2 ед. Причем, эти показатели зависели от антибиотика, его дозы и качества рациона. Наибольшее ростостимулирующее действие оказывал кормогризин. Значительно больший рыбоводно-биологический эффект оказывали препараты в составе комбикорма К1 с более высоким содержанием углеводов.

Наибольший рыбоводно-биологический эффект оказывало комплексное введение витамицина и кормогризина в количестве по 0,4 г на 1 кг корма.

По сравнению с контролем суточный прирост осетров повышался почти в 1,5 раза (К1) и на 37,6% (К2), выживаемость — на 55 (К1) и 14% (К2), что обусловило более высокую — соответственно в 2,3 и 1,6 раза — рыбопродуктивность. Наименьшие затраты кормов отмечены также при комплексном использовании витамицина и кормогризина — 2 и 1,2 ед. в то время как на других соответствующих вариантах этот показатель составлял 2,2-3,4 ед. (К1) и 1,3-1,7 ед. (К2) (рис.1).

Физиолого-биохимическая характеристика молоди русского осетра при введении в рацион витамицина и кормогризина

Витамицин и кормогризин в составе комбикормов оказывали положительное влияние на пластический обмен рыб, что нашло отражение в накоплении различных групп органических веществ и энергии в теле молоди осетра: сухого вещества — на 16-37%, протеина — 3,5-32% (за исключением витамицина 0,4 г), жира — от 12% до 1,7 раза, углеводов — на 67-70% (за исключением

витамицина 0,2 г и кормогризина 0,6 г), энергии на 13-25% по сравнению с контролем. Следует отметить, что накопление энергии находилась в прямой зависимости от накопления протечина и может рассматриваться как положительный фактор физиологического состояния растущего организма осетров. На отложение минеральных веществ в теле осетра препараты не оказывали существенного влияния, что вероятно, связано с усилением липогенеза у молоди осетра при введении в рацион кормовых антибиотиков (Хоара и др., 1983).

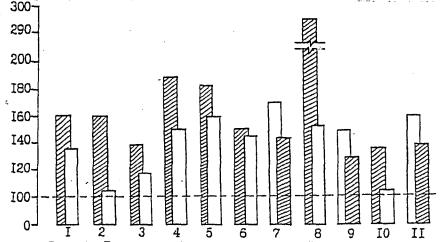


Рис. 1. Показатели физиологического действия композиции витамицин+кормогризин в составе комбикормов для молоди осетра, % к контролю

Известно, что интенсивность пластического обмена находится в прямой зависимости от доступности пищи и ее усвоения в процессе пищеварения. Витамицин и кормогризин в составе комбикормов улучшали переваримость органической фракции искусственных диет, причем с увеличением дозы препаратов переваримость органического вещества рационов повышалась от 20 до 44% по отношению к контролю. Улучшению переваримости органической фракции комбикормов способствовало повышение акт

тивности пищеварительных ферментов - пепсина - на 12-19%, трипсина - более чем на 20% и амилазы - до 1,6 раза.

Эффективность использования протеина корма на прирост молоди осетра под влиянием различных антибиотиков не однозначна: с повышением дозы витамицина она снижалась с 135 до 103% относительно контроля, вне зависимости от дозировки кормогризина — увеличивалась до 1,5 раза. Во всех случаях витамицин и кормогризин способствовали повышению эффективности использования валовой энергии кормов на рост молоди на 26-65% по сравнению с контролем.

Несмотря на то, что доза 0,4 г/кг корма витамицина или кормогризина не по всем показателям была наиболее эффективсовместное их использование по многим показателям было выше. Что свидетельствует о взаимодополняющем. синергическом действии данных препаратов (см. рис. 1). Так, совместное введение витамицина и кормогризина по 0,4 г в комбикорм К1 способствовало большему в 1,5 раза и более накоплению в осетров сухого вещества, протеина, жира, валовой энергии и на 37,5% углеводов, а в К2 - накоплению основных групп органических и минеральных веществ, а также валовой энергии более чем на 16%. Переваримость органической фракции этих комбикормов составила 65.8 и 73,9%, что превышало контроль на 35,7 и 14%, и было обусловлено усилением активности пепсина и трипсина почти на 20%, амилазы - на 28%. При этом эффективность использования протеина и энергии корма повысилась более чем на 35%.

Таким образом, по сумме рыбоводных и физиолого-биохимических показателей оптимальной для молоди осетра является композиция витамицин+кормогризин в количестве по 0,4 г на 1 кг корма с содержанием их по активному веществу соответственно 0,2 и 2 мг на 1 кг корма.

БИОЛОГИЧЕСКАЯ И ФИЗИОЛОГИЧЕСКАЯ ОЦЕНКА ИСПОЛЬЗОВАНИЯ ЛАКТОБАКТЕРИНА В СОСТАВЕ КОМБИКОРМОВ ДЛЯ МОЛОДИ РУССКОГО ОСЕТРА

Лактобактерин представляет собой микробную массу живых лактобацилл, лиофилизированных в среде культивирования и является составной частью нормальной микрофлоры кишечника, оказывает антагонистическое действие по отношению к патоген-

ным и условно-патогенным микроорганизмам, сохраняет и регулирует физиологическое равновесие кишечной флоры (Справочник ВИДАЛЬ, 1997).

Рыбоводно-биологические результаты выращивания молоди осетра на комбикормах с введением лактобактерина

Влияние различных доз лактобактерина (1 вариант - 0,2,2 - 0,4,3 - 0,6% от массы корма) на рост и физиологическое состояние молоди осетра изучали при кормлении в 2 этапа: в первые и последующие 15 суток, начиная с личинок при переходе на экзогенное питание. По завершении 1 этапа кормления отмечена тенденция в повышении темпа роста (не более 8,5%) и выживаемости (на 4,3-6,7%) молоди 1 и 2 вариантов - соответственно 0,2 и 0,4% лактобактерина (табл.1).

Таблица 1 Рыбоводно-биологические показатели выращивания молоди осетра при введении в рацион лактобактерина

Показатели	l Bar	Варианты опыта							
	1 1	2	3						
1 этап									
Масса начальная, мг	50 <u>+</u> 1.2	50 <u>+</u> 1,2	50 <u>+</u> 1.2	50 <u>+</u> 1,2					
Масса конечная, мг	414 <u>+</u> 21	405 <u>+</u> 18	387 <u>+</u> 20	386 <u>+</u> 17					
Выживаемость, %	66,7	65,5	62,4	62, 5					
KK	0,84	0,95	0,94	1,05					
ЭИП, %	18,1	14,7	16.8	15,0					
ЭИЭ, %	14,1	11,3	12,5	11,9					
2 этап		•							
Масса начальная, мг	414 <u>+</u> 21	405 <u>+</u> 18	87 <u>+</u> 20	386 <u>+</u> 17					
Масса конечная, мг	1896 <u>+</u> 140	1927 <u>+</u> 121	1495 <u>+</u> 90	1787 <u>+</u> 108					
Выживаемость, %	97,0	96,7	96,5	97.4					
KK	0,68	0.75	0,83	0,.70					
ЭИП, %	30,3	26.1	25.5	31.4					
ЭNЭ, %	23,6	20,9	20,0	24.2					

Примечание: КК - затраты кормов на единицу прироста

Однако, введение в рацион лактобактерина способствовало снижению кормовых затрат на прирост молоди в 1 варианте — на 20%, во 2 и 3 — на 10% и повышению эффективности использования протеина и энергии корма на рост рыб на 19-21%.

На 2 этапе выращивания лактобактерин не оказывал существенного влияния на рост и выживаемость молоди осетра. По отношению к контролю с увеличением дозы лактобактерина затраты кормов несколько повышались, а эффективность использования протеина и энергии последовательно снижалась соответственно на 3,5-18,8 и 2,5-17,4%.

Физиолого-биохимическая характеристика молоди русского осетра при введении в рацион лактобактерина.

В результате введения лактобактерина в рацион осетра на 1 этапе отмечены некоторые различия химического состава тела молоди, в частности, достоверное повышение (P<0,05) протеина. По завершении 2 этапа выращивания достоверные отличия (P<0,01-0,001) от контроля отмечены по содержанию в теле осетров воды, жира и минеральных веществ.

Анализ величины накопления различных групп органических и минеральных веществ и энергии в теле молоди осетра показал, что наибольшая ретенция их была у рыб на рационе с 0,2% лактобактерина: сухого вещества — на 10,6, протеина на 14,2%, что свидетельствует о более интенсивном использовании кормового протеина на пластический обмен, отложение жира — на 24,6%, минеральных веществ — на 5,5% и накопление энергии — на 12% было выше по сравнению с контролем.

На 2 этапе выращивания наиболее благоприятное влияние на накопление различных групп органических веществ и энергии также оказывала доза лактобактерина в количестве 0,2% корма. Накопление сухого вещества, протеина и энергии в теле молоди увеличилось на 4,3-6,5%, жира — на 10,3% по сравнению с контролем. При увеличении дозы лактобактерина до 0,6% — ретенция органических веществ и энергии снизилась более чем на 24% по отношению к контролю.

Содержание отдельных фракций липидов в теле молоди зависело от уровня лактобактерина в корме. Так, по завершении 1 этапа при введении в корм 0,2% лактобактерина в общих липидах рыб несколько (на 4-5%) увеличилось содержание фосфо-

липидов и триацилглицеридов, а содержание моноацилглицеридов и эфиров холестерина снизилось на 6-12%. С увеличением дозы лактобактерина содержание фосфолипидов и триацилглицеридов оставалось либо на уровне контрольного, либо снижалось более чем на 9%, а количество холестерина последовательно возрастало с 5,9% до 10,3%, тогда как в контроле оно составило 5,4%.

По завершении 2 этапа выращивания у молоди кормах содержание фосфолипидов было равно контролю или отличалось от него на 5-5,6%. Уровень триацилглицеридов у опытных рыб снизился на 10.5-14.3%. а моноацилглицеридов возрос в 1,2-1,9 раза по сравнению с контролем. Содержание диацилглицеридов при дозах лактобактерина 0,2 и 0,6% было выше соответственно на 11,1 и 40,3%, а при дозе 0,4% - ниже на 18%. чем в контроле. Количество холестерина и эфиров холестерина возросло в 1,3-1,4 раза. При введении в рацион молоди осетра различных доз лактобактерина на 1 этапе кормления отмечено уровня инозитфосфатидов и лизофосфатидилхолинов увеличение более чем в 1,5 раза при близком содержании других фосфолипидов по сравнению с контролем (табл. 2).

Таблица 2 Фосфолипидный спектр тела молоди осетра, % фосфолипидов

	1			Вариа	нты опь	ата				
Фосфо-	•				1	2 91	2 этап			
липиды	1 1	1 2	1 3	1 . К	1	2	3	I к		
ИФ	1,9	1,9	1,2	0,7	1,2	1,6	1,3	0,9		
ЛФХ	0,3	0,3	0,4	0,2	0,5	0,5	1,1	0.4		
СФМ	4,5	4,8	4,3	4,4	4.2	5,3	4,1	4,2		
ФΧ	62,7	63,4	62,5	63,2	64,5	65,5	60,1	64,6		
ΦС	6,5	6,2	5,0	6,4	4,6	4.1	5,0	5,3		
АЄФ	23,6	23.0	26,0	24.6	24.1	22,1	27,5	23,8		
ΠΓΦ+Κ	0,5	0,5	0,6	0.5	0.9	0,9	0.9	0,8		

Примечание: ИФ-инозитфосфатиды; ЛФХ-лизофосфатидилхолины; СФМ-сфингомиелины; ФХ-фосфатидилхолины;

ФС-фосфатидилсерины; ФЭА-фосфатидилэтаноламины;

ПГФ+К-полиглицерофосфатиды+кардиолипин

По завершению 2 этапа уровень инозитфосфатидов у опытных рыб оставался выше - более чем в 1,3 раза. других фосфолинидов, в т.ч. лизофосфатидилхолинов, почти не отличалось от контроля.

Известно, что в обеспечении нормального функционирования организма важное значение отводится соотношению эссенциальных жирных кислот W6 и W3 ряда (Сидоров, 1983).

этапа выращивания у опытных рыб отмечается В конце 1 повышение доли жирных кислот W6, что обусловило увеличение в сравнении с контролем величины W6/W3 в общих липидах и фосфолипидах (рис. 2).

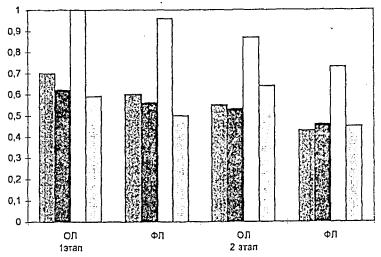


Рис. 2. Соотношение W6/W3 кислот липидов в теле молоди осетра при введении в рацион лактобактерина

□ - 1 вариант; □ - 2 вариант; □ - 3 вариант;

🖂 - контроль; ОЛ - общие липиды; ФЛ - фосфолипиды

Однако, согласно литературным данным, физиологической нормой для многих видов рыб, в том числе осетровых, является соотношение W6/W3 в пределах 0,3-0,8 (Watanabe, 1982: ГиряeB. 1990: Абросимов, Бирюкова, 1991; Бирюкова, Абросимова, Следовательно, величина данного соотношения у молоди при дозе 0,6% лактобактерина более 0,8 свидетельствует о ее неудовлетворительном физиологическом состоянии.

По завершении 2 этапа соотношение W6/W3 у рыб на кормах с 0,2 и 0,4% лактобактерина было ниже, чем у контрольных рыб и составило 0,53-0,55 в общих липидах и 0,43-0,46 в фосфолипидах. Несмотря на снижение данных показателей у рыб на диете с 0,6% лактобактерина до физиологической нормы, величина W6/W3 была выше, чем в контроле.

Влияние лактобактерина на формирование кишечной микрофлоры молоди осетра

Микроорганизмы отдельных физиологических групп обладают специфичностью в расщеплении пищевых субстратов. Однако их функциональная деятельность зависит от состава пищи, интенсивности питания, возраста и других факторов. Известно, что в кишечниках рыб, питающихся естественной пищей, в максимальных количествах обнаруживались молочнокислые бактерии, а в кишечниках рыб, питающихся комбикормами, бактерии, расщепляющие белковые вещества (Шивокене, 1989).

Наибольшее количество бактерий через 15 дней кормления обнаружено в химусе контрольных рыб. При введении в рацион лактобактерина численность бактерий была более чем в 6 раз ниже. При этом микробиальная флора кишечников осетра при максимальной дозе лактобактерина и контроле почти полностью (на 99%) была представлена минерализующими белок бактериями. Лактобактерин в количестве 0,2 и 0,4% способствовал повышению количества молочнокислых и амилолитических бактерий соответственно на 3,2-4,5 и 12,7-26,9% при соотношении между их численностью соответственно 1:0,7 и 1:0,5. В плане симбионтного питания, на начальных этапах кормления наиболее благоприятна кишечная флора рыб на рационе с 0,4% лактобактерина, а затем - 0,2%.

Несмотря на некоторое снижение количества минерализующих белок бактерий в химусе рыб по завершении 2 этапа, они оставались доминирующими. При этом повышалась численность молочнокислых и амилолитических бактерий до 12%. Изменилось количественное соотношение между молочнокислыми и амилолитическими бактериями. У рыб на кормах с лактобактерином 0.2, 0.6% и контрольных оно увеличилось в пользу амилолитических и составило соответственно 1:4, 1:3 и 1:4. У молоди на корме с 0.2% лактобактерина это соотношение составило 1:0,01 в пользу молочнокислых.

Таким образом, по комплексу биологических и физиологи-

ческих показателей, в т.ч. по развитию молочнокислых бактерий, являющихся облигатными для многих видов рыб, и в большей степени подверженными к подавлению при кормлении искусственными кормами наиболее оптимальным является лактобактерин в количестве 0.2% от массы корма.

БИОЛОГИЧЕСКАЯ И ФИЗНОЛОГИЧЕСКАЯ ОЦЕНКА ИСПОЛЬЗОВАНИЯ АНФЕЛАНА В СОСТАВЕ КОМОЖИЙНОВ ДЛЯ МОЛОДИ РУССКОГО ОСЕТРА

Характеристика анфелана

Анфелан, разработанный под руководством В.И.Гольденберга, является антиоксидантом нового поколения и наиболее биологически адекватным для осетровых и лососевых рыб (Шмаков, 1991; Абросимова, Киянова, 1992; Касумян, 1997). Он предназначен для стабилизации рыбной муки, а также кормовых смесей для различных объектов сельского хозяйства, в том числе и рыбоводства, и в отличие от других традиционно применяемых антиоксидантов обладает антибактериальной активностью (Гольденберг, 1994).

Опытный (с анфеланом) и контрольный (с ионолом) корма содержали протеина 53,9-54,4%, жира - 7,5-7,7%, золы - 6,7-6,9%, энергии - 18,8-19,0 МДж. Перекисное и кислотное числа в данных кормах не превышали допустимых значений - 0,2% йода и 45 мг КОН соответственно.

Рыбоводно-биологические результаты выращивания молоди осетра на комбикормах с рыбной мукой, стабилизированной анфеланом и ионолом

Результаты исследований рассмотрены в 2 этапа: первые 15 и последующие 24 сутки активного питания.

Через 15 суток кормления средняя индивидуальная масса и упитанность молоди на обеих диетах существенно не отличалась. Однако, на диете с анфеланом выживаемость молоди увеличилась на 19%, а эффективность использования протеина и энергии корма - на 44 и 39% соответственно при снижении кормовых затрат на 18%. В последующие 24 дня кормления различия в темпе роста увеличились в 1,5 раза. У молоди на корме с

анфеланом средняя масса была достоверно выше на 51%, выживаемость на 24%, эффективность использования протеина и энергии корма — на 55 и 58% соответственно при снижении кормовых затрат почти в 1,5 раза (табл.3).

Таблица 3 Результаты выращивания молоди осетра

	Время кормления									
Показатели	1	.5 cyr	39	сут						
	Опыт	Контроль	0пыт	Контроль						
Масса: начальная, мі	42 <u>+</u> 0,8	42 <u>+</u> 0,8	132 <u>+</u> 22	126 <u>+</u> 20						
конечная, мг	⁻ 132 <u>+</u> 22	126 <u>+</u> 20	3044+241	2016 <u>+</u> 208						
Упитанность, ед	1,04 <u>+</u> 0,04	0,94 <u>+</u> 0,04	0,99 <u>+</u> 0,03	1,03 <u>+</u> 0,05						
Выживаемость, %	60,9	52,0	70,8	66,7						
KK	0,98	1,2	0,63	0,92						
DNU' %	14,48	10.08	29,56	19,06						
ЭИЭ, %	9,76	7,03	23,54	14.89						

Физиолого-биохимическая характеристика молоди русского осетра при введении в рацион анфелана

На 15 сутки в теле опытной молоди осетра по сравнению с контрольной отмечено незначительное повышение уровня сухого вещества и протеина, соответственно на 10 и 4% и снижение жира в 1.7 раза, что свидетельствует о высоком липотропном действии анфелана для ранней молоди, в т.ч. личинок, на начальных этапах питания.

По завершении 1 этапа кормления (15 суток) содержание фосфолипидов и эфиров холестерина у рыб в опыте было выше на 21.7% и 68.2% соответственно по сравнению с контролем. Одна-ко соотношение фосфолипидов к общим липидам было несколько выше - 0,59 в опыте и - 0,44 в контроле.

Сравнительный анализ спектра фосфолипидов контрольной и опытных групп не выявил существенных различий. Следует отметить лишь более низкий уровень фосфатидилхолина (на 6,3%) и некоторое увеличение содержания фосфатидилэтаноламина (на

20,2%) у контрольной рыбы.

На 15 сутки уровень насыщенных жирных кислот в общих липидах и фосфолипидах опытной молоди был выше (но не более 9%), а ненасыщенных — ниже по сравнению с контролем. Наибольшие различия в содержании различных групп жирных кислот, особенно моноеновых, отмечали в составе фосфолипидов. Соотношение W6/W3 в общих липидах опытной и контрольной молоди было одинаковым, а в фосфолипидах это соотношение у опытных рыб было ниже в 1.4 раза (табл.4).

Таблица 4 Характеристика жирных кислот общих липидов фосфолипидов молоди осетра (1 этап). % суммы жирных кислот

Жирные		0бщие	пиды	ı	Фосфолипиды					
кислоты	Опыт Контроль					Опыт	1	Контроль		
Насыщенные		36,2		34,4		36,2		32,0		
Ненасыщенные		63,8		65,6		63,8		68,0		
Моноеновые		37,7		38,7		37,7		40,6		
Полиеновые		26,1		26,9		26,1		27,4		
W6/W3		0,8		0,8		0,5		0,7		

По завершении кормления на 39 сутки содержание сухого вещества и протеина у молоди обоих вариантов мало отличалось - 12-12.5 и 66-68% соответственно. Однако анфелан стимулировал липогенез, о чем свидетельствовал более высокий - на 38% - уровень жира у опытных рыб. В общих липидах осетра на корме с анфеланом по сравнению с ионолом уровень фосфолипидов и эфиров холестерина повысился на 19% и 1.8 раза, а неэстерифицированных кислот и моноацилглицеринов уменьшился в 1.8 и 2.8 раза соответственно (табл. 5).

Различия в содержании насыщенных, монсеновых и полиеновых жирных кислот как в общих. так и фосфолипидах незначительны и не превышают 8%.

Таблица 5 Состав общих липидов и фосфолипидов молоди осетра, выращиваемой на кормах с рыбной мукой, стабилизированной анфеланом и ионолом, %

Общие липиды	тыпо	Контроль Фос	Контроль Фосфолипиды				
ТАГ	27,4	28,3	ИФ	0,9	0,7		
ФЛ	43,5	35 , 8 ·	ЛФХ.,	0,5	1.0		
X	8,2	7,5	СФМ	6,8	6,7		
ЭХ	6,8	3,8	ΦХ	59,7	56,6		
MAT	2,7	7,5	ΦС	6,6	6,8		
ДАГ	4,1	3,8	ФЭА	24,8	27,6		
жен	7,3	13,3	H+Ф1∏	0,7	0,6		

Примечание: ТАГ-триацилглицериды, ФЛ-фосфолипиды,

Х-холестерин, ЭХ-эфиры холестерина,

МАГ-моноацилглицериды, ДАГ-диацилглицериды, НЭЖК-неэстерифицированные жирные кислоты

У опытных рыб по сравнению с контролем уменьшилось соотношение W6/W3 кислот в общих липидах и фосфолипидах соответственно в 1,3 и 1,6 раз (табл. 6).

Таблица 6 Характеристика жирных кислот общих липидов, фосфолипидов молоди осетра на кормах со стабилизированной рыбной мукой

İ	% ინი	шX	липидов	водипиисофооф %					
	опыт	1	Контроль	1	тыпо		Контроль		
	34,7		35,3		32,2		30,4		
	65,3		64,7		67,8		69,6		
	37,4		38,4		40,3		43,8		
	27.9		26,3		27,5		25,8		
	0,6		0,8		0,5		0.8		
		34.7 65,3 37,4 27,9	34,7 65,3 37,4 27,9	34,7 35,3 65,3 64,7 37,4 38,4 27,9 26,3	34.7 35.3 65.3 64.7 37.4 38.4 27.9 26.3	34.7 35.3 32.2 65.3 64.7 67.8 37.4 38.4 40.3 27.9 26.3 27.5	34,7 35,3 32,2 65,3 64,7 67,8 37,4 38,4 40,3 27,9 26,3 27,5		

Влияние анфелана на процессы свободно-радикального окисления у молоди осетра

Для изучения влияния анфелана на процессы свободно-радикального окисления молодь, выращенную на комбикорме с ионолом, разделили на 2 группы близкие по размерно-весовым характеристикам. Группу 1 (опыт) кормили комбикормом с анфеланом, а 2 (контроль) - комбикормом с ионолом.

Через 15 суток кормления содержание продуктов перекисного окисления липидов — малонового диальдегида, диеновых коньюгатов и оснований Шиффа в печени и мышцах опытных рыб соответственно на 16,3-36.4, 30,5-46 и 24-25,5% было ниже их уровня у контрольной молоди. Уровень таких антиоксидантов как супероксиддисмутаза и L-токоферол в печени опытных рыб на 21 и 30%, а мышцах на 17,2 и 23,8% был выше по сравнению с контрольными (рис.3).

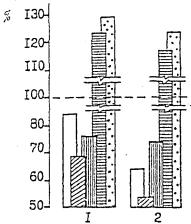


Рис. 3 Уровень продуктов перекисного окисления липидов и антиоксидантов в тканях молоди осетра,

% к контролю

1 - печень; 2 - мышцы; 🖂 - малоновый диальдегид;

ZZZ - диеновые конъюгаты; IIII - основания Шиффа;

🔳 - супероксиддисмутаза: 🖂 - L-токоферол

Различная интенсивность перекисного окисления липидов в организме опытных и контрольных рыб обусловила определенные отличия липидного состава, которые в основном выразились в повышении в общих липидах опытных рыб доли моноеновых и сни-

жении полиеновых жирных кислот. Однако, соотношение W6/W3 кислот в фосфолипидах опытной молоди в 1,4 раза ниже по сравнению с контрольной, у которой эта величина осталась на начальном уровне (табл.7).

Таблица 7 Характеристика общих липидов и фосфолипидов молоди осетра

Жирные	1	% общих липидов						% фосфолипидов				
кислоты	-	1		2		3	1	1	1	2	1	3
Насыщенные		34,5	5	32,7		34,2		31,9		30,8		32,4
Ненасыщенные		65,5	5	67,3		65.8		68,9		69.2		67,6
Моноеновые		38,5	5	40,8		33,8		41.7		43,0		39,9
Полиеновые		27,€)	26,5		32,0		26,4		26,2		27,7
W6/W3		0,9)	0,7		0,7		0,8		0,5		0.7

Примечание: 1 - начало эксперимента; 2 - комбикорм с анфеланом; 3 - комбикорм с ионолом.

С ростом у молоди осетра как на опытных, так и контрольных кормах содержание витаминов С. А. B_1 и B_2 повышалось. Однако, при близком уровне витаминов А и B_2 у молоди обеих групп содержание витаминов С и B_1 у опытных рыб было выше соответственно на 18 и 21.7%, чем у контрольных.

Таким образом, комбикорм на основе рыбной муки, стабилизированной анфеланом, способствует снижению интенсивности перекисного окисления липидов и может быть использован, в качестве профилактического, а возможно и лечебного, препарата.

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ВИТАМИЦИНА, КОРМОГРИЗИНА, ЛАКТОБАКТЕРИНА И АНФЕЛАНА В СТАРТОВЫХ КОМБИКОРМАХ ДЛЯ ОСЕТРА

Расчет экономической эффективности проведен по стоимости кормовых затрат на единицу прироста молоди осетра.

Наибольшая экономическая эффективность получена при комплексном использовании витамицина и кормогризина. Снижение кормовых затрат и стоимости единицы прироста в этом случае составило соответственно 0,5-1,4 ед. и 29-39% в зависи-мости от рецептуры.

Ввиду высокой стоимости лактобактерина, экономический эффект не был отмечен, не смотря на снижение кормовых затрат на прирост молоди — до 20%. Экономический эффект возможно будет реализован при промысловом возврате осетровых рыб.

При равной цене рыбной муки, стабилизированной анфеланом и ионолом, и. соответственно, комбикорма, стоимость единицы прироста осетровой молоди на кормах с анфеланом снизилась на 31.2 %.

вывопы

Основные выводы диссертационной работы заключаются в следующем:

- 1. Для улучшения физиологического состояния молоди осетровых, а также повышения роста и выживаемости следует в комбикорма вводить такие жизненно необходимые биологически активные вещества, как антибиотики, эубиотики и эффективные антиоксиданты.
- 2. Наиболее благоприятно влияет на обмен веществ, комплекс кормовых антибиотиков витамицин+кормогризин в количестве соответственно 0,2 и 2 мг по активному веществу на 1 кг корма. Физиологическое состояние молоди, а также ее рост и выживаемость зависит от состава комбикорма. С улучшением питательности искусственных кормов ростостимулирующий эффект антибактериальных препаратов снижается.
- 3. Композиция витамицин+кормогризин в составе комбикорма способствует повышению активности ферментов трипсина, пепсина и амилазы более чем на 20%, переваримости органической фракции кормов на 14-36%, а также темпа роста молоди осетра почти в 1,5 раза, выживаемости на 14-55%, эффективности использования протеина и энергии соответственно на 49-88 и 60-81%.
- 4. Наибольший положительный физиологический эффект оказывает лактобактерин в количестве 0,2% от массы корма. При этом у молоди улучшается липидный состав, который выражается в уменьшении соотношения W6/W3 кислот в общих липидах и фосфолипидах соответственно до 0,55 и 0,43 и увеличении доли докозагексаеновой кислоты до 13%, уровень которой определяет

степень устойчивости рыб к экстремальным воздействиям.

- 5. Биологическая эффективность лактобактерина в количестве 0,2% от массы корма наиболее характерна на начальном этапе кормления с переходом личинок на активное питание, когда эффективность использования протеина и энергии корма на рост рыб повышается на 19-21%, ретенция основных групп питательных веществ и энергии на 12-25% при снижении кормовых затрат на 20%.
- 6. Лактобактерин в составе рациона способствует наиболее благоприятному развитию молочнокислых бактерий, являющихся облигатными для многих видов рыб и в большей степени
 подверженным к подавлению при кормлении искусственными кормами.
- 7. Анфелан, в составе комбикорма способствует повышению в первые 15 суток выращивания молоди осетра эффективности использования протеина и энергии корма на рост на 39-44% при снижении кормовых затрат на 18%, а в последующие 24 суток повышению эффективности использования протеина и валовой энергии корма соответственно на 55 и 58% при одновременном снижении кормовых затрат почти в 1,5 раза.
- 8. Анфелан, способствует снижению интенсивности перекисного окисления липидов в тканях молоди осетра, о чем свидетельствует снижение в фосфолипидах рыб величины W6/W3 в 1,4 раза, снижение содержания малонового диальдегида, диеновых конъргатов и оснований Шиффа в печени на 16,3, 30,5 и 24%, а в мышцах на 36,4, 46 и 25,5%; повышения уровней супероксиддисмутазы и L-токоферола в печени на 21 и 30%, а мышцах на 17,2 и 23,8% и содержания витаминов С и В₁ соответственно на 18 и 21,7%. Анфелан можно применять при нарушениях в организме молоди осетра процессов свободно-радикального окисления.

ПРАКТИЧЕСКИЕ РЕКОМЕНЛАЦИИ

С целью улучшения физиолого-биохимического состояния, а также повышения скорости роста и выживаемости молоди осетра, в том числе и личинок, рекомендуем:

- вводить в стартовые комбикорма для осетра кормовые антибиотики и эубиотики;
 - из кормовых антибиотиков применять композицию витами-

цин+кормогризин соответственно 0,2 и 2 мг по активному вешеству на 1 кг корма:

- для поддержания равновесия кишечной микрофлоры у молоди осетра использовать лактобактерин в количестве 0.2% от массы корма;
- для стабилизации и предотвращения липидной порчи рыбной муки или кормов использовать новый антиоксидант анфелан в прописи авторов;
- лактобактерин и анфелан можно использовать в качестве профилактического или лечебного препарата при выращивании молоди осетровых рыб.

По теме диссертации опубликованы следующие работы:

- 1. Абросимова Н.А., киянова Е.В. Биологическое действие новых антиоксидантов в составе рыбной муки стартовых кормов осетра //Тез. докл. I международ. конфер.: Биологические ресурсы Каспийского моря, сентябрь, 1992 г. Астрахань, 1992. С. 6-7.
- 2. Киянова Е.В. Влияние лактобактерина на продуктивные качества стартовых комбикормов //"Первый Конгресс ихтиологов России". Тез. докл. Астрахань, сентябрь 1997. Москва, изд-во ВНИРО, 1997. С.329.
- 3. Абросимова Н.А., Киянова Е.В. Основные биологически активные вещества, используемые в стартовых комбикормах для осетровых рыб //"Основные проблемы рыбного хозяйства и охраны рыбохозяйственных водоемов Азово-Черноморского бассейна" Сборник научных трудов. Ростов-на-Дону: Полиграф, 1998. С.325-330.