ЗОБОВА Ольга Николаевна

ВЛИЯНИЕ РАЗЛИЧНОЙ ОСВЕЩЕННОСТИ И ФОТОПЕРИОДА НА РОСТ И РАЗВИТИЕ ТИЛЯПИИ

Специальность 06.02.04 — частная зоотехния, технология производства продуктов животноводства

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена на кафедре аквакультуры Московской сельскохозяйственной академии им. К.А. Тимирязева.

Научный руководитель: доктор сельскохозяйственных наук, профессор **В.А. Власов.**

Официальные оппоненты:

доктор сельскохозяйственных наук А.В. Жигин; кандидат сельскохозяйственных наук Е.В. Липпо.

Ведущая организация — Всероссийский НИИ ирригационного рыбоводства.

Защита состоится **2004 года в 2004 года в часов** на заседании диссертационного совета Д 220.043.07 при Московской сельскохозяйственной академии им. К.А. Тимирязева.

Адрес: 127550, Москва, ул. Тимирязевская, 49. Ученый совет МСХА.

С диссертацией можно ознакомиться в ЦНБ МСХА.

Автореферат разослан « В » « » » « 2004 года.

_ К.Н. **К**алинина

1.Общая характеристика работы

1.1. Актуальность исследований. Тиляпии испокон веков были и остаются основным объектом рыбоводства в странах Ближнего Востока и Африки. В настоящее время тиляпиеводство является одной из наиболее быстро развивающихся отраслей рыбоводства. В отечественном рыбоводстве тиляпия является сравнительно новым объектом. Они обладают ценными биологическими и хозяйственными качествами. Быстрый рост, высокая толерантность к условиям среды и резистентность ко многим заболеваниям делают этих рыб одним из перспективных объектов промышленного рыбоводства (Привезенцев Ю.А. и др., 1985).

Перспективы производства тиляпии в нашей стране связаны с освоением термальных вод ТЭЦ, ГРЭС и АЭС, а также выращиванием ее в условиях индустриального производства. Круглогодичное получение живорыбной продукции, особенно в зимние месяцы, позволяет повысить рентабельность таких производств (Дюндик и др., 1989)

Из-за отсутствия естественного освещения в условиях производства возникает необходимость в использовании искусственного освещения. Для подбора оптимальной освещенности и фотопериода для выращиваемого вида рыб, необходимо знать механизм воздействия на него света. Свет обычно действует как направляющий фактор, вызывающий гипофизарно-мозговые реакции, влияние которых распространяется на другие органы через эндокринную и симпатическую нервную системы. В естественных условиях, его периодичность вызывает выделение соматотрапного гормона и анаболических стероидов и влияет на двигательную активность с одновременной стимуляцией деятельности щетовидной железы (Хоар, Рендолл, Бретт, 1983).

Данных по изучению влияния освещенности и фотопериода на тиляпию в научной литературе крайне недостаточно. Как правило, в рыбоводных цехах при выращивании тиляпии, освещение включено в период работы обслуживающего персонала и нормативы по этому показателю отсутствуют. В

РОС. НАЦИОНАЛЬНАЯ
БИБЛИОТЕКА
С.Петербург,
ОЭ 300/484/66

связи с вышеизложенным была поставлена цель изучить влияние освещения на рост и развитие тиляпии при бассейновом содержании.

1.2. Задачи исследований:

- -провести выращивание молоди тиляпии в бассейновых условиях с различной освещенностью воды и фотопериодом, при этом изучить:
- воздействие освещенности и фотопериода на рыбоводные показатели и рост тиляпий;
- использование ими корма;
- морфометрические показатели рыб;
- потребление тиляпией кислорода;
- гематологические показатели:
- соотношение отделов головного мозга;
- поведение рыб

Определение влияния зрительного анализатора на рост тиляпии, пищевую активность, морфометрические показатели, потребление рыбам кислорода, соотношение отделов головного мозга.

- 1.3. Научная новизна исследований. Впервые комплексно изучено влияние света на продуктивные качества тиляпии и ее физиологическое состояние при выращивании в бассейнах. Была установлена их связь с данным фактором среды и подтверждена возможность их выращивания в условиях изученного диапазона колебания этого фактора.
- 1.4. Практическое значение результатов.

Определен оптимальный диапазон значений освещенности и фотопериода для выращивания тиляпии в бассейнах.

1.5 Апробация работы. Материалы диссертационной работы доложены: на второй научно-практической конференции «Животные в городе», Москва 2002; на научной конференции молодых ученых МСХА 2002.

1.6.Публикации. По материалам диссертации опубликовано 3 печатные работы.

1.7. Структура и объем диссертации. Диссертационная работа состоит из введения, обзора литературы, материала и методов исследований, результатов исследований, заключения, выводов и практических рекомендаций, приложе- имя. Работа изложена на 118 страницах машинописного текста, содержит 26 таблиц, 24 рисунка. Список литературы включает 170 наименований работ, в том числе 76 на иностранных языках.

2. Материалы и методы исследований

Исследования проведены в бассейнах аквариальной кафедры аквакультуры Московской сельскохозяйственной академии им. К. А. Тимирязева в период с 2000 по 2002 гг.

Для реализации поставленных целей были проведены 4 опыта (табл.1). В первом опыте объектом исследований служила красная тиляпия - гибрид Oreocchromis mossambbiicus х О. niloticus, средней массой 1,8 г. Во втором опыте объектом исследований была красная тиляпия средней массой 10 г. В третьем опыте в качестве объекта исследований использовали тиляпию О. niloticus средней массой 6,5 г. В четвертом - тот же вид средней массой 3,5 г.

В первых двух опытах ставили задачи изучить степень влияния различной освещенности на рост и морфофизиологические показатели тиляпии.

В первом опыте провели исследования по следующим вариантам освещенности: затемнение, 1400лк, 2800 лк, 5600 лк. Во втором опыте использовали следующие варианты освещенности: затемнение (не фиксируемая люксметром Ю-116), 700 лк, 1400 лк, 2800 лк, 5600 лк. Фотопериод в обоих опытах составлял 12 часов свет и 12 часов темнота.

Кормление опытной рыбы проводили гранулированным комбикорм марки «AQUAGROWER ST-11».

В первом опыте рыбу кормили вручную 4 раза в день из расчета 3-5 % от ее массы. Во втором опыте кормление проводили с помощью маятниковых автокормушек типа «Рефлекс».

В третьем опыте изучали влияние фотопериода на рост и морфофизиологические показатели нильской тиляпии. Было сформировано шесть опытных групп, различающихся по режимам освещения. Изучали влияние на рыбу следующих режимов освещения: первый вариант-затемнение; второй переменное освещение (3 часа свет: 2часа темнота: 3 часа свет: 16 часов темнота); третий- 8 часов свет: 16 часов темнота; четвертый - 12 часов свет: 12 часов темнота; пятый - 16 часов свет: 8 часов темнота; шестой - 24 часовое освещение. Интенсивность освещения во всех вариантах опыта была одинаковой и колебалась в пределах 1400-2800 лк.

Освещенность в бассейнах в вариантах 1, 2, 3 опытов измеряли люксметром Ю-116 у поверхности воды.

В четвертом опыте изучали роль зрительного анализатора в пищевой активности тиляпии. Для этой цели были сформированы четыре группы рыб, две из которых, опытные, были ослеплены. Рыбу кормили вручную 3 раза в день из расчета 3-5 % от их массы. Амплитуда освещенности в бассейнах колебалась от не фиксируемой люксметром величины в ночное время до 700 лк в дневное. Продолжительность светового дня составляла 9 часов.

В период опытов поддерживали одинаковую температуру воды $(25^{\circ} \, \text{C})$ и содержание растворенного кислорода (более 3,5 мг/л).

Рост тиляпии в опытах изучали путем проведения контрольных ловов один раз в каждые 10-20 дней. Относительную скорость роста определяли по формуле Броди. Также определяли эффективность использования корма.

По окончании опытов определяли экстерьерные показатели рыб (Правдин, 1966). Морфофизиологические показатели определяли методом морфофизиологического анализа (Шварц и др., 1968). В течение эксперимента изучали стандартный обмен у тиляпии (Строганов, 1962). В конце второго и третьего опытов были проведены гематологические исследования рыб (Голодец, 1964). Во втором и четвертом опытах проведена сравнительная оценка морфологического состояния отделов головного мозга тиляпии (Брагинская, 1948). В течение всего опыта проводили наблюдения за поведением рыб.

Схема опыта

Constitution			DO TT BOTTOM
ОСВЕЩЕННОСТЬ		ФОТОПЕРИОД	РОЛЬ ЗРИТЕЛЬ- НОГО АНАЛИЗА-
			TOPA
ОПЫТ 1	ОПЫТ 2	ОПЫТ 3	ОПЫТ 4
			0.120.1
Варианты:	Варианты:	Варианты фотопе-	Варианты опыта:
1-затемпение;	1-затемнение;	риода (ч):	1-ослепленные рыбы
2-1400 лк;	2-700лк;	1-затемнение;	(затемненный и ос-
3-2800 лк;	3-1400 лк;	2-3C:2T:3C:16T;	вещенный бассей-
4-5600 лк.	4-2800 лк;	3-8C:16T;	ны);
Фотопериод (ч):	5-5600 лк;	4- 12C:12T;	2-зрячие рыбы (за-
12C:12T	Фотопериод:	5- 16C:8T;	темненный и осве-
1	12C:12T	6- 24C	щенный бассейны).
		Освещенность	При освещенности
		1400-2800 лк	700 лк и фотоперио-
			де 9С:16Т
Объем бассейна	Объем бассейна	Объем бассейна	Объем бассейна
200 л	200 л	200 л	100 л
Нач. масса рыбы -	Нач.масса рыбы -	Нач.масса рыбы -	Нач.масса рыбы –
1,84 r	9,5 г	6,5 г	3,5 г
Кормление по нор-	Кормление из авто-	Кормление из ав-	Кормление по норме
ме (3-5% от массы)	кормушек	токормушек.	(3-5% от массы).
(5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, , , , , , , , , , , , , , , , , , ,	(0 0 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Продолжительность	Продолжительность	Продолжитель-	Продолжительность
опыта - 40 дней	опыта - 70 дней	ность опыта - 150	опыта - 50 дней.
		дней	·
		<u> </u>	
		1	

Полученные результаты были обработаны биометрически **с** помощью программного обеспечения Microsoft Excel 2000 согласно общепринятой методике (Плохинский, 1980).

3. Результаты исследований

3.1. Рыбоводные показатели и рост рыбы.

3.1.1. Рост рыбы и результаты выращивания при различной освещенности (опыт 1,2)

Рост является количественным выражением процесса развития организма. Влияние внешних факторов на организм зачастую выявляется в изменении скорости роста рыб. Отмечено, что в зависимости от экологических особенностей вида свет может, как стимулировать, так и угнетать рост организма.

В первом опыте (табл. 2) при кормлении по норме освещенность на показатели роста тиляпии существенно не повлияла. Наибольшая относительная скорость роста была у тиляпии в варианте с освещенностью 2800 и 1400 лк и соответствовала 136,1 % и 137,3 %, а наименьшая в затемненном варианте и варианте с освещенностью 5600 лк -135,5%.

Таблица 2 Результаты выращивания тиляпии (первый опыт)

Показатель	Освещенность бассейнов, лк						
	1400	2800	5600	Затемн.			
Масса рыб в начале опыта, г.	1,84±0,09	1,9±0,10	1,9±0,09	1,84±0,09			
Масса рыб в конце опыта, г.	9,9±0,53	10,0±0,61	9,85±0,64	9,57±0,59			
Относительная скорость роста в период опыта, %	137,3	136,1	135,5	135,5			
Затраты корма, кг/кг	0,77	0,78	0,79	0,78			
Выживаемость, %	100	100	100	100			
Биомасса, кг/ м3	2,72	2,75	2,72	2,72			

В опыте 2 при кормлении рыбы из автокормушек (табл. 3) прослеживается следующая тенденция - с увеличением освещенности до 2800 лк скорость роста рыб возрастает с 120% до 135%. Самая низкая скорость роста была у рыб из затемненного варианта 120%. По-видимому, это обусловлено увеличением скорости протекания обменных процессов в организме тиляпий и как следствие увеличение их двигательной и пищевой активности. Что при кормлении из самокормушек способствует увеличению скорости роста рыбы.

Таблица 3

Показатель	Освещенность бассейнов, лк						
	Затеми.	700	1400	2800	5600		
Масса рыб в начале опыта, г	10,1±0,59	9,5±0,60	9,6±0,62	9,8±0,55	9,4±0,6		
Масса рыб в конце опыта, г	40,33±2,2	45,8±2,7	46,6±2,9	50,5±3,0	43,3±2,4		
Относительная скорость роста в период опыта, %	120	131	132 .	135	128		
Затраты корма, кг/кг	1,30	1,10	1,26	1,10	1,10		
Выживаемость, %	90	87	82	87	84		
Биомасса, кг/ м3	9,9	11	10,5	12,1	9,95		

3.1.2. Роста и результаты выращивания рыб при различных фотопериодах (опыт 3)

В третьем опыте (табл.4) при увеличении продолжительности светового дня возрастала скорость роста рыбы. Наибольшая скорость роста была в варианте с фотопериодом 16С:8Т (177,6%), но при круглосуточном освещении скорость роста тиляпии заметно снижалась. Таким образом, круглосуточное освещение является стресс фактором для тиляпии.

Таблица 4 Результаты выращивания тиляпии (третий опыт)

Средняя	Режимы освещения бассейнов (ч)						
масса рыб	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	
	Затемн.	3C:2T:3C: 16T	8C:16T	12C:12T	16C:8T	24C	
Через 50 дней, г	32,0	46,6	50,9	54,0	64,1	43,6	
В начале опыта, г	6,6±0,51	6,5±0,60	6,5±0,32	6,6±0,4	6,6±0,62	6,5±0,37	
В конце опыта, г	62,2±5,7 а-в,с,d,е	84,7±7,2 b-a,e	89,0±5,5 c-a	93,5±6,9 d-a	109,6±7,8 e-a,B	Опыт пре- кращен	
Относител ьная скорость роста в пе- риод опы- та, %	161,6	171,2	172,8	173,6	177,6		
Затраты корма, кг/кг	1,16	1,10	1,14	1,00	1,00		

Выживае-	93	87	90	87	87	
Биомасса, кт/ м ³	13,3	17,0	18,4	18,7	22,0	

^{&#}x27;Примечание: здесь и далее буквами показаны варианты, между которыми существуют достоверные различия ори P<0.05

Как показали наши исследования, свет оказывает существенное влияние на скорость протекания обменных процессов у тиляпии. Лучшие показатели были получены при выращивании тиляпии при освещенности от 700 до 2800 лк и фотопериоде от 12 до 16 часов.

3.1.3. Роста и результаты выращивания рыб в четвертом опыте

В четвертом опыте (табл. 5) существенных различий по массе рыб в конце исследований не отмечено. Имеется тенденция — наиболее высокой скоростью роста (112,2 и 110,0 % соответственно) отличались зрячие и слепые рыбы из освещенного бассейна. Известно, что у тиляпий хорошо развиты обоняние и другие органы чувств. Поэтому зрение у них не играет значительной роли в пищевой активности тиляпии. Очевидно что, освещение помимо зрения играет роль в развитии тиляпии через нервную и эндокринный системы.

Таблица 5 Результаты выращивания тиляпии (четвертый опыт)

Показатель	Вариант опыта						
	Освещенн	ый бассейн	Затемненн	ый бассейн			
	Контроль Опыт		Контроль	Опыт			
Масса рыб в начале опыта, г	3,5±0,12	3,5±0,11	3,5±0,12	3,6±0,13			
Масса рыб через 30 су- ток, г	10,8	10,3	9,4	8,7			
Масса рыб в конце опыта, г	12,8±0,70	12,4±0,64	12,0±0,80	10,7±0,82			
Относительная скорость роста в период опыта, %	112,2	110,0	109,7	99,3			
Затраты корма, кг/кг	1,20	1,24	1,20	1,30			
Выживаемость, %	100	100	100	100			
Биомасса, кг/ м3	2,16	2,16	2,16	1,98			

3.2. Эффективность использования корма рыбами и выживаемость

Как показали наши исследования (табл. 2,3,4,5), тиляпия эффективно использует корм при любых световых условиях. Затраты корма по вариантам во всех опытах были примерно одинаковыми. Несколько большие затраты были отмечены в затемненном варианте (1,3 против 1-1,2 кг/кг в других). Изза снижения двигательной и пищевой активности тиляпий в затемненных бассейнах часть питательных веществ вымывается водой. В результате чего, снижается эффективность использования энергии корма.

Выживаемость рыб в первом и четвертом опытах составила 100 %. Во втором и третьем опытах наибольшей стресс устойчивостью (стрессом в эксперименте являлись проводимые обловы рыбы) обладали рыбы из затемненных вариантов (90-93%). По остальным вариантам выживаемость рыбы была примерно одинаковой.

33 Экстерьерные и морфофизиологические показатели

3.3.1. Индексы телосложения

Различная освещенность (табл.6) не оказала влияния на большинство индексов телосложения. Исключением является коэффициент упитанности. По всей видимости, оптимальной для накопления жира у тиляпий в опыте 2 является освещенность на уровне 700 лк (Ky=4,2, против Ky=3,7-3,75 в других вариантах).

Если закономерности между режимами освещения и индексами телосложения не отмечено, то она наблюдалась между экстерьерными показателями и фотопериодами (опыт 3). У тиляпий, выращенных в диапазоне от 8 часов до 16 часов освещения в сутки экстерьерные показатели были несколько лучше, чем в остальных вариантах. Достоверно меньшим индексом прогонистости обладали рыбы, выращиваемые с 12 - часовым освещением (2,75). Наряду с этим меньшим индексом высокоспинности обладали рыбы в варианте с переменным режимом освещения (33,4%). Рыбам этого варианта соответствовал один из наибольших индексов прогонистости (2.87). Рыбы из вариантов затемненного и переменного освещения обладали наименьшим коэффициентом упитанности (3,01 и 3,0 соответственно). Наиболее компактными (100 %) были рыбы контрольной группы (четвертый опыт) из освещенного бассейна в сравнении с рыбами в затемненном бассейне (96%).

3.3.2. Морфофизиологические показатели

Физиологическое состояние рыбы можно определить, опираясь на индексы отдельных частей тела и органов. Определенные органы рыб очень чутко реагируют на условия содержания и кормления.

Изменение освещенности в бассейнах на интерьерных показателях тиляпии отражаются незначительно (табл.7). Достоверные различия были выявлены лишь по массе порки между вариантами с освещенностью 2800 лк и 700 лк (опыт 2). Наибольшая масса порки 81,4 % в варианте с освещенностью 2800 лк соответствовала более низкой массе внутренних органов 17,6 %. В тоже время рыбы, выращенные при освещенности 700 лк, обладали достоверно лучшим показателем коэффициента упитанности (табл.6). Повидимому, это обусловлено тем, что у тиляпии накопление жира происходит внутри брюшной полости. За счет чего происходит увеличение массы внутренних органов и снижение относительной массы порки.

В третьем опыте (табл.7) установлен меньший показатель порки и тушки в затемненном варианте (80 и 57% соответственно). В затемненном варианте была достоверно выше относительная масса гонад (1,4%) в сравнении с вариантом с 12 часовым освещением (0,38%).

В четвертом опыте у рыб контрольной группы освещенного бассейна были достоверно меньшая масса головы (20,6 %) и масса гонад (0,4 %) в сравнении с опытной группой из затемненного варианта, что свидетельствует о более высоком содержании у них мышечной ткани.

Масса внутренних органов. Относительная масса внутренних органов как индикатор физиологического состояния организма отражает уровень протекания обменных процессов.

ЭКСТЕРЬЕРНЫЕ ПОКАЗАТЕЛИ

ПОКАЗАТЕЛИ	ВАРИАНТЫ ОПЫТА								
		ОПЫТ 2							
индексы:	Затеми.	700 лк	1400 лк	2800 лк	5600 лк				
Прогонистости	2,58±0,03	2,45± 0,02	2,57±0,027	2,56±0,025	2,52± 0,02				
Большеголовости, %	20,25±0,17	20,08±0,25	20,98±0,29	0,66± 0,2	21,26± 0,2				
Высокоспинности, %	30,5± 0,25	31,9± 0,25	31,36±0,27	30,77±0,24	31,52±0,27				
Компактности,%	75,55±0,5	80,94±0,6	79,69± 0,7	76,7± 0,7	79,1±0,6				
Коэффициент упитанности	3,7± 0,08 a-b	4,2±0,1 b-a,c,d,e	3,7±0,12 c-b	3,75±0,07 d-b	3,7±0,07 e-b				
			ОПЫТ 3						
индексы:	Затемн.	3C:2T:3C:16T	8C:16T	12C:12T	16C:8T				
Прогопистостости.	2,85±0,01 a-d	2,87±0,03 b-d	2,87±0,02 b-d	2,75±0,02 d-a,b,c,e	2,82±0,02 e-d				
Большеголовости,%	30,8±0,27	30,5±0,23	30,65±0,16	30,34±0,2	30,48±0,22				
Высокоспинности,%	35,1±0,18	33,4±0,4 b-a,c,d		35,5±0,5	34,24±0.3				
Компактности,%	86,9±0,44	86,12±0,66	88,3±0,5	88,8±0,56	88,33±0.54				
Коэффициент упитанности	3,01±0,03 a-d,e	3,00±0,06	3,07±0,03	3,13±0,04	3,18±0,03				
		ОПЬ	IT 4						
индексы:	Контроль	Опыт	Контроль	Опыт					
Прогонистости	2,45±0,03	2,5±0,04	2,5±0,03	2,49±0,03					
Большеголовости, %	26,8±0,35	26±0,41	26,3±0,19	27,2±0,27					
Высокоспинности, %	40,9±0,57	40,6±0,6	40,6±0,44	40,2±0,44					
Компактности, %	100±1,4 1-3,4	97±1,5	96±0,77	96±1					
Коэффициент упитанности	3,37±0,03	3,39±0,4	3,35±0,3	3,13±0,03					

МОРФОФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ

Показатели	ВАРИАНТЫ ОПЫТА -								
			опы	T 2					
	Затемн.	700 лк	1400 лк	2800 лк	5600 лк				
Порка, %	79,7±0.9	79.5±0.7 b—d	80.2±0.67	81.4±0.7	79.9±1				
Тушка, %	52.2±0.6	52.5±0.6	53.2±0.57	53.7±0.7	52.5±0.8				
Осевой скелет, %	14,41±0,33	13,77±0,4	14,69±0,3	13,96±0,4	14,1±0,5				
Голова, %	19,6±0,3	19,33±0,3	19,6±0,3	19,52±0,2	19,50±0,4				
Внутренние органы, %	19,7±0,58	19,8±0,56	18,9±0,4	17,6±0,44 d-a, b	18,6±0,6				
Гонады, %	2,56±0,9	1,35±0,3	1,24±0,5	1,13±0,4	1,97±0,56				
	опыт з								
····	Затемн.	3C:2T:3C:16T	8C:16T	12C:12T	16C:8T				
Порка, %	80±0,8 a-b,c,d,e	83,7±1,3	84±1,4	83±1	84±1,2				
Тушка, %	57±1 a-b	61±1,3	59±1,4	59,2±0,7	60±1,2				
Осевой скелет, %	15±1,1	15,1±1	14,76±0,8	13,6±0,26	12,7±0,7				
Голова, %	15,6±0,6	16,6±0,5	17,3±0,45	16,58±0,9	16,6±0,3				
Внутренние органы, %	17,2±1,2	16,9±1,1	16,7±0,9	16,4±0,9	16,7±1				
Гонады, %	1,4±0,35 a-d	0,97±0,34	1,27±0,6	0,38±0,09	1,03±0,3				

Сердце в составе внутренних органов тиляпии занимает небольшую долю (1-1,38 %). Освещенность и фотопериод на массу сердца не оказывают существенного влияния.

Селезенка, как орган кроветворения и депо эритроцитов, имела относительную массу от 0,04 % до 0,1% Достоверные различия ее в вариантах объясняются тем, что селезенка как депо крови, может очень быстро менять свою массу, выбрасывая кровяные тельца в кровяное русло под воздействием определенных изменяющихся факторов среды.

По массе желудочно-кишечного тракта существенных различий между вариантами опытов отмечено не было. По показателям относительной массы почек и внутреннего жира у рыб, выращенных в экспериментах различий не обнаружено, за исключением варианта с опытными рыбами содержавшихся в затемненном бассейне (опыт 4). У них масса внутреннего жира (0,6 %) достоверно ниже, чем в других вариантах (2 %) при достоверно более высоком показателе массы гонад (1,6 %). В других вариантах он составил соответственно 0,4-0,8 %.

Результаты по изучению относительной массы гонад показали, что увеличение гонад у тиляпии происходит при снижении освещенности бассейнов (опыт 2). Наибольшая их относительная масса отмечена в варианте с затемнением (2,56 %), а наименьшая (1,13 %) в варианте с освещенностью 2800 лк. Очевидно, что наибольшей скоростью созревания гонад характеризуются рыбы, выращиваемые в наименее благоприятных условиях.

3.4. Физиологические показатели

3.4.1.Стандартный обмен

Показателем скорости протекания обменных процессов служит показатель интенсивности потребления рыбами кислорода (ИПК). При увеличении освещенности бассейнов у тиляпии заметно возрастает скорость потребления кислорода как в опыте 1, так и в опыте 2 (рис. 1). Так в затемненном варианте он составил - 0,248 мг/г.ч, а в варианте с

освещенностю 5600 лк -0,360 мг/г.ч. С увеличением освещенности бассейнов возрастала двигательная и пищевая активность рыб. За счет чего увеличивалась ИПК.

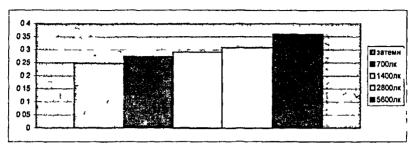


Рис.1. Потребление кислорода тиляпией при различной освещенности, мг/г массы тела в час (опыт 2).

Влияние фотопериода на ИПК представлено на рис.2. Как видно из приведенных данных, круглосуточное освещение приводит к ускорению стандартного обмена у рыб (0,22мг/г ч) в сравнении с другими вариантами третьего опыта (рис.2). В вариантах с освещением с 8 часового до 16 часового расход кислорода на обмен веществ у тиляпии был фактически одинаковым. При переменном освещении бассейна потребление кислорода тиляпией было несколько ниже (0,18 мг/г ч)

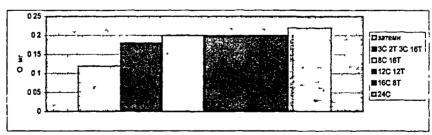


Рис. 2. Потребление кислорода тиляпией при различных режимах освещения, мг/г массы тела в час (опыт 3)

Самый высокий уровень потребления кислорода в четвертом опыте был у контрольных рыб в освещенном бассейне - 0,22 мг/г. Низкий уровень потребление кислорода был отмечен в опытном варианте у рыб из

затемненного бассейна -0,15 мг/гл. В остальных вариантах опыта потребление кислорода было примерно одинаковым -0,19 мг/г.ч.

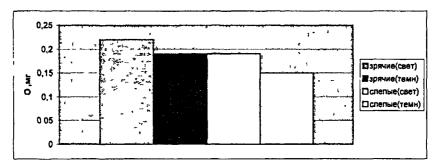


Рис. 3. Потребление кислорода тиляпией в четвертом опыте, мг/г массы тела в час (опыт 4)

Таким образом, наличие освещения, также как и его отсутствие или наличие дефекта зрения влияют на интенсивность обмена тиляпии.

3.4.2. Гематологические показатели

Кровь является важнейшей составляющей внутренней среды организма. Характеристики крови находятся под влиянием, как факторов внутренней среды, так и под воздействием внешних факторов (Кудряшова, 1967; Серпунин, 1983; Головина, Тромбицкий, 1989).

Проведенные гематологические исследования во втором опыте показали наличие достоверных различий по показателю РОЭ между затемненным вариантом (3,57 мм/ч) и остальными (табл. 8). В третьем опыте самый высокий показатель РОЭ также соответствовал варианту с затемнением (2,5 мм/ч). Между другими вариантами в обоих опытах этот показатель был примерно одинаковым. Это объясняется снижением иммунитета у рыб из затемненного варианта и как качественный показатель этого увеличение РОЭ. Однако как во втором, так и в третьем опытах этот показатель во всех вариантах находился в пределах физиологической нормы для рыб.

Достоверно более высокий уровень гемоглобина в варианте с освещенностью 700 лк в сравнении с рыбой из пятого варианта можно объяснить воздействием стресс фактора и как следствие выброс **в** кровь эритроцитов и повышение уровня гемоглобина.

Влияние освещенности и фотопериода на остальным гематологические показателям не дало достоверных различий, все показатели находятся в пределах физиологической нормы для тиляпии.

Таблица 8 ГЕМАТОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ

Показатели	Вариант опыта						
	L		ОПЫТ 2				
	Затемн.	700 лк	1400 лк	2800 лк	5600 лк		
РОЭ, мм/ч	3,57±0,2 a-b,c,d,e	1,86±0,4	1,71±0,3	1,57±0,3	1,57±0,4		
Гемоглобин, %	8,14±0,28	9,3±0,4 b-e	8,7±0,5	8,11±0,4	7,63±0,4		
Гематокрит:							
плазма, %	78,7±0,2	74,8±1,6	78,8±1,7	78,8±0,6	77,5±0,7		
форм.элемент, %	21,3±0,2	25,2±1,6	21,2±1,7	21,2±0,6	22,5±0,7		
			опыт 3				
Показатели	Затемн.	3C:2T:3C: 16T	8C:16T	12C:12T	16C:8T		
РОЭ, мм/ч	2,5±0,38	1,95±0,3	1,8±0,13	1,9±0,21	1,9±0,27		
Гемоглобин, %	7,5±0,4	7,35±0,4	7,7±0,3	7,81±0,3	8,2±0,2		
Гематокрит:							
плазма,%	71±,1,8	72±1,8	72±0,9	75±1,21	74±0,6		
форм.элементы, %	29±1,8	28±1,8	28±0,9	25±1,21	26±0,6		

3.4.3.Соотношение отделов головного мозга

Уровень развития фоторецепции оказывает большое влияние на морфологию головного мозга, в частности, на развитие среднего мозга, мозжечка и ретикулярной формации ствола. При изменении роли зрительной сигнализации в онтогенезе рыб, параллельно меняется и морфология головного мозга (Иванов, 2003).

По результатам второго и четвертого опытов были изучены соотношения отделов головного мозга у тиляпий (табл. 9). Достоверных различий по изучаемым показателям между вариантами выявлено не было. Наличие или отсутствие освещения не влияет на развитие отделов головного мозга ни у здоровых, ни у ослепленных рыб.

Таблица 9 **СООТНОШЕНИЕ ОТДЕЛОВ ГОЛОВНОГО МОЗГА (см.)**

Показатель.	ВАРИАНТЫ ОПЫТА								
				ОПЫТ	72				
	Затемн.	Затемн. 700 лк 1400 л						5600 лк	
Длина левой	0,3±0,01 0,32±0,01		0,3±0,0	2	0,34±0,0	1	0,35±0,01		
зрительной доли						<u> </u>			
Длина правой	0,31±0,01	0,32	±	0,3±0,0	2	0,33±0,0	1	0,32±0,01	
зрительной доли		0,02							
Длина мозжечка	0,32±0,01	0,33	±0,01	0,29±0,	01	0,31±0,0	1	0,33±0,01	
Ширина переднего	0,63±0,02	0,65	±0,02	0,71±0,	1 0,67±0,02		2	0,7±0,02	
мозга				ļ					
		ł		ОПЫТ	۲4	<u> </u>			
Показатель	Контроль	· · · · · · · · · · · · · · · · · · ·	Опыт		Контроль			Опыт	
	(свет)		(свет	·)	(темнота)		(темнота)		
Длина левой	0,33±0,010		0,33±	0,007 0,32±0,009		0.35±0,008			
зрительной доли	·		İ						
Длина правой	0,31±0,01		0,29±	±0,007 0,		0,29±0,016		0,33±0,009	
зрительной доли					}				
Длина мозжечка	0,28±0,01		0,28±0,01		0,27±0,007		0,	,3±0,008	
Ширина переднего	0,50±0,01		0,51±0,018		0,	48±0,014	0,	,51±0,01	
мозга									

3.5.Поведение рыб в опыте

Чередование светлого и темного периодов суток формируют определенный тип поведения рыб, регулирует и синхронизирует определенный уровень обменных процессов. Об этом можно судить не только по результатам визуальных наблюдений, но и по данным стандартного обмена. Как показали регулярно проводимые наблюдения за поведением рыб (опыты 1 и 2), наименьшая двигательная активность была характерна для тиляпий, вырашиваемых в слабо освещенной воде. Рыба в бассейнах с освещенностью 700лк. 1400 лк. 2800 лк располагалась равномерно по всей акватории бассейна. В варианте с освещенностью 5600 лк в первые 25 дней тиляпий старались располагаться по периферии бассейна в участках с наименьшей интенсивностью освещения, проявляя высокую двигательную и пищевую активность. Однако корм брали настороженно. Подплывая к кормушке брали гранулу и быстро возвращались обратно. Постепенно рыба перестала проявлять отринательный фототаксис. При освещении затемненного бассейна рыба уходила от эпицентра освещения к периферии.

В третьем опыте различные биоритмы рыб, установившиеся при тех или иных световых режимах, определяли различия в суточном режиме питания.

Наблюдения за поведением рыб в опыте с различным световым режимом не выявили какого-либо определенного влияния режимов освещения на поведение рыб. Несколько большей двигательной активностью отличались тиляпий в бассейнах с наибольшей продолжительностью светового дня.

При изучении фактора зрения в поведении рыб отмечено, что наименьшей двигательной активностью характеризовались ослепленные тиляпий. Слепая тиляпия в освещенном бассейне по сравнению со зрячей хуже реагировала на корм и имела более темную окраску тела. У ослепленной рыбы наблюдалась тенденция сбиваться в стаи. Со временем поврежденная сетчатка глаза у ослепленной тиляпий восстанавливалась. Об этом можно судить по восстановлению естественной окраски тела рыбы и по

возобновившейся ее реакции на луч. Несмотря на постепенное восстановление зрения реакция ослепленной рыбы на корм оставалась значительно более замедленной - 120 сек, нежели у зрячей тиляпии - 10,1 сек.

Выводы

- 1. При выращивании тиляпии в бассейнах оптимальным для их роста и развития является диапазон освещенности в пределах от 700 до 2800 лк и фотопериод от 8 до 16 часов.
- 2. Различные освещенность и фотопериод не оказывают существенного влияния на эффективность использования рыбой корма. Исключением является вариант с круглосуточным затемнением. В затемненных условиях выращивания отмечено не только снижение скорости роста, но и повышение затрат корма. Если при освещенности бассейнов в пределах 700-5600 лк затраты корма составили около 1,1 кг/кг, то в затемненных условиях 1,3 кг/кг.
- 3. С увеличением интенсивности освещения до 5600 лк и продолжительности фотопериода до 16-24 часов у тиляпии снижается устойчивость к стресс факторам, в результате чего снижается выживаемость рыб в бассейнах.
- 4. Зависимость экстерьерных и морфологических показателей тиляпии от изученного диапазона освещенности и фотопериода не отмечена, за исключением гонадосоматического индекса. Результаты по изучению относительной массы гонад показали, что увеличение гонад у тиляпии происходит при снижении освещенности бассейнов и уменьшении фотопериода. Наибольшая их относительная масса отмечена в варианте с затемнением (2,56 % во втором опыте и 1,4 % в третьем опыте), а наименьшая (1,13 %) в варианте с освещенностью 2800 лк и 16 часовым освещением (0,38%).

- 5. С повышением уровня освещенности и продолжительности светового дня увеличивается потребление рыбами кислорода. Максимальное потребление кислорода отмечено при освещенности 5600 лк 0,36 мг/г.ч и при круглосуточном режиме освещения -0,22 мг/г.ч.. Минимальное потребление отмечено в затемненных условиях-0,12 мг/г.ч..
- 6. При круглосуточном затемнении бассейнов происходит изменение показателя реакции оседания эритроцитов (РОЭ). Он повышается до 3,57мм/ч. в вариантах с интенсивностью освещения 700-5600 лк он составил 1,57-1,86 мм/ч.
- 7. Ослепленные тиляпии продолжают активно питаться при незначительном отставании в скорости роста. Со временем происходит восстановление зрения. На соотношение отделов головного мозга ни освещенность, ни хирургическое ослепление не оказывает влияния.
- 8. Наименьшая двигательная активность была характерна для тиляпий, выращиваемых в слабо освещенной воде. Слепая тиляпия в освещенном бассейне по сравнению со зрячей хуже реагировала на корм и имела более темную окраску тела. У ослепленных рыб наблюдалась тенденция сбиваться в стаи.

Практические рекомендации

Обобщив и проанализировав научные результаты проведенной работы, представляется целесообразным предложить производству рекомендации:

- 1. При выращивании в бассейнах товарной тиляпии желательно использовать освещенность в пределах 700-2800 лк.
- Продолжительность светового дня (фотопериод) при выращивании тиляпии в бассейнах должен поддерживаться в диапазоне от 8 до 16 часов.

По материалам диссертации опубликованы следующие работы:

1. Зобова О.Н., Власов В.А., Иванов АА. Влияние освещенности на рост молоди тиляпии, выращиваемой в искусственных условиях. Сборник науч.

трудов «Современные проблемы в зоотехнии» - М.: МГАВМиБ им. К.И.Скрябина Ч.И., 2001, с.87-89.

- 2. Зобова О.Н. Депонированная рукопись. «Оптимальная освещенность и режимы освещения для выращивания тиляпии в закрытых помещениях», объемом 5 стр. под № 80/13 ВС-2002 Труды научной конференции молодых ученых и специалистов ТСХА, 2002
- 3. Зобова О.Н. Влияние различных режимов освещения на рост тиляпии при выращивании в закрытых помещениях. Материалы второй научно-практической конференции «Животные в городе» -М.: ИПЭЭ РАН, 2003, с.241-244.

Объем 1,25 печ. л. Зак. 202 Тираж 100 экз.

#11127