2 2 MAR 1993

Бсероссийский научно-исследовательский институт прудового рыбного хозяйства (ВНИИПРХ)

На правах рукописи

печка петр петрович

9AK. 639.312.06:626.887: 639.371.52: 639.371.5:591.531.1:

поликультура карпа и растительноядных рыб в садках, установленных в естественных водоемах

RNJORONTXN _ 01.00.EC

ABTOPEDEPAT

диссертации на соискание ученой степени кандидата биологических наук

Москва, 1993

Всероссийский научно-исследовательский институт прудового рыбного жезяйства (ВНИИПРХ)

· На правах рукописи

лечка петр петрович

9ДК. 639.312.06:626.887: 639.371.52: 639.371.5:591.531.1:

ПОЛИКУЛЬТУРА КАРПА И РАСТИТЕЛЬНОЯДНЫХ РЫБ В САДКАХ, УСТАНОВЛЕННЫХ В ЕСТЕСТВЕННЫХ ВОДОЕМАХ

RNJORGNIKN _ 01.00.E0

автореферат

диссертации да соискание ученой степени

кандидата биологических наук

Москва, 1993

Работа выполнена в лаборатории индустриального рыбоводства Научно-исследовательской рыбохозяйственной станции (НИРХС)

Научный руководитель - доктор биологических наук, профессор, В.К.Виноградов

Официальные оппоненты: — доктор биологических наук, старшии научный сотрудник, А.Н.Корнеев - кандидат биологических наук.старший научный сотрудник В.П.Михеев

Ведущее учреждение: Московская сельскохозяйственная академия им.К.А.Тимирязева

Зацита диссертации состоится "20" априли 1993 г.

в "______ часов на заседании специализированного совета Д 117.04.01 во Всероссийском научно-исследовательском институте прудового рыбного хозяйства (ВНИИПРХ) по адресу: 141821, Московская обл.Джитровский р-н. пос. Рыбное (ВНИИПРХ).

С диссертацией можно ознакомиться в библиотеке Всероссийского научно-исследовательского института прудового рибного хозяйства.

Автореферат разослан " 5" морта 1993 г.

Учений секретарь специализированного совета

€.П. Тряшкина

Актуальность работы: Дефицит земельных и водных пломадей ограничивает возможности увеличения производства рыби за счет строительства новых рыбхозов и интенсиснкации произсла. В то же время, увеличение производства товарной рыбы можно остжествить путем более интенсивного использования имеждихся водных ресурсов, в том числе за счет организации садковых хозяйств, размещенных не только в водоемах-охладителях, но и водоемах с естественных температурным режимом (водохранилищах и озерах).

Успех эксплуатации таких козяйств определяется правильним выбором объектов выращивания и мест установки садков, а также реализацией технических и технологических схем, разработаних с учеток местных особенностей. Для выяснения эффективности использования водоемов комплексного назначения У-й эони рыбоводства для садкового выраживания рыбы, начиная с 1987 года КИРХС совместно с Приднестровский рыбоковом организовал опитко-производственные работы по выраживания карпа и растительноящими рыб (белий и пестрый толстолобики) в садках, установленных в Гоянском заливе фубоссарского водохраниямия.

<u>Пель исследований</u>: Разработка технологии выраживания товарного карпа в монокультуре и в поликультуре с растительноядимым рабами в садках, установленных в родовие с естественным томпературным режимом. Для достижения поставленной цели необходико было:

- определять спіназявную плотность посадли карпа в садим при внрадносния е монокудатура;
- -жа ыда де аказменататова килероп атоонтоли аткъзменае -;иолисти е едитоленили в кънсенсъя
- отмеделить изаболяе разменальную услодную кассу посалочного натериал голотемите парка, белого и пестрого толотемобимо;

- изучить влияние кратности кориления и качества рациона на рост карпа и выход рыбной продукции;
- изучить влияние температурного режима на рост карпа и растительноядных рыб при выращивании в садках;
- изучить закономерности роста растительнозиных рыб и карпа
 в поликультуре;
- изучить характер питания и пищевые взаимоотношения рыб в поликультуре при вырацивании в садках;
- изучить влияние садкового хозяйства на локальное загрязнение водоема.

Наччная новизна: Впервые изучены закономерности роста карпа, белого и пестрого толстолобиков при выращивании в садках,
установленных в водоеме с естественным температурным режимом в
зависимости от плотности посадки, соотношения видов в поликультуре, исходной массы посадочного материала и температуры воды.
Установленные закономерности использованы при разработке нормативно-технологических документов.

Практическое значение. Представленные материалы являются составной частью исследований, осуществленных в ходе выполнения плана научно-исследовательских работнирхс по теме: "Изучить возможность вырацивания товарной рыбы в садках в водоемах жомплексного назначения" и гос.регистрации 01880048264.

Материалы диссертации использованы при составлении рекомендации по выраживанию рыбы в садках в водоемах комплексного назначения с ограниченным водостоком (1990) и "Норм выраживания карпа и радужной форели в садках в водоемах с естественной температурой воды (1988). В результате использования данных технологии, объем выраживания товарной рыбы в садковом хозяйстве Приднестровского рыбхоза, достиг 75 т. эпробация работи. Результати исследований, составляемих основу диссертации, обсуждались на ученом совете НИРХС в период с 1987 по 1991 годи. Материалы диссертации доложены на конференциях молодых ученых НИРХС в 1988-1989 гг., на Всесомамог говещании по невым объектам и невым технологиям (Рыбное, 1989).

Публикации. По матерналам диссертации опубликовано 8 работ.

Структура и объем работи. Диссертация изложена на ____ страницазуважинописного текста и состоит из введения 7 глав, заключения, выводся, практических рекомендаций, приложения на 10 страницах. Список литературы, включает 165 источника, в том числе 40 инестранних авторов. Работа иллюстрирована 19 таблицами и 25 рисунками.

Обзор литературы

Обзор литературы содержит анализ отечественных и зарубежных данных по разработке и применению технологии садкового выраживания товарной рыбы в водеемах с естественным техноратурным режином. Сообшены сведения в современном развитии садкового рыбоводства.

Обоснована необходимость проведения опитов по разработке технологии выраживания карпа в монокультуре и в поликультуре с растительнояцимии рибаки (белим и пестрим телстолобиками) в садмах, установленних в сотественних водовмах.

Натериал и методика исследования.

Исследования выполнены в период 1987-1991 гг. в садковом хозяйстве, построенном в Гоянском заливе Дубоссарского водохранилина. Объектом изучения служили годовики и двухлетки карпа и растительноядных рыб (белого и пестрого толстолобиков).

Главной методической особенностью работы явилось то, что в ее основу положен производственный эксперимент. Опытные работы выполнялись непосредственно в производственных садках пломадью 10 м2 . при глубине погружения 2-2.5 м.

Для оценки условий выраживания осуществляли контроль за температурным и гидрохимическим режимом водоема.

Кормление карпа проводили комбикормами рецептов ОПК-1, РЗГК -1, РГМ8в, 16-80, 111-9укр, К-110, по комбинированному двухэтапному методу кормления, предложенному А.Н.Корнеевим (1980, 1982).

Суточный расход комбикорма расчитывали по рекомендациям Л.А.Кучеренко (1985), В.И.Федорченко и др. (1986).

При выраживании растительноядных рыб (белого и пестрого толстолобика) в садках особое внимание уделяли изучению фито- и зоопланитона.

Отбор проб фитопланктона осуществлялся осадочных методом, предложенным П.И.Усачевым (1961). При изучении качественного состава использовали определители пресноводных водорослей УССР (Окснер и Роля, 1956,т 1-2). Количественную обработку проводили счетным методом. Биомассу определяли исходя из индивидуальных масс отдельных видов водорослей (Уломский, 1962).

Пробы зоопланитона отбирали методом И.А.Киселева (1969).
При определении видового состава пользовались определителями
Е.Ф.Мануйловой (1964) и Ruduscu Ludovic (1960).

Для подсчета биомассы эсопланитона использовали материалы, приведенные в работах А.Зиновьева (1947), Ф.Д.Мордухай-Болтовского (1954), А.П.Брагинской (1957).

При изучении питания карпа и растительноядних раб использовали метод индивидуального сбора и обработки проб во едством вессвого анализа пими (Богоров, 1934; Боруцкий, 1955, 1973; "Руководство по изучению питания риб в естественных условиях", 1961).

Для определения интенсивности питания рыб вычисляли общий индекс наполнения кишечников по методу В.Д.Бродской и Л.А.Зенкевича (1989).

Для изучения интенсивности роста раби дважди в месяц проводили контрольные взвеживания не менее 25% находящихся в садкерий. Для сравнения скорости роста различних видов в поликультуре использовали структуру стандартной модели часвонакопления риб сбаранов и др., 1979). Для сравнения скорости роста двужлеток карпа и растительноядних риб, определяли продукционный козффицент массонакопления, который расчитывали по формуле:

$$F_{M} = \frac{(M_{K} - M_{O})}{T} \frac{3}{3}$$

150 :

Пи — общий продукционний коэффициент массонакопления: Ик и Но — масса понечная и начальнам, г; Л — время виречивания, сутим (Куимненка, 1987).

Характеристика экспериментальной базы

Гоянский залив с типичным озерным гидрологическим режимом составляет средний участок Дубоссарского водохранилима. Залив не подвержен интенсивному влияним ветров, волнобоев, не судоходен, небольшой по площади (277 га), достаточно глубокий (средняя глубина 6 м, в районе расположения садисв \$-10 м), проточний (10-20 см/мин). Обратное течение в заливе верхних слоев наблюдается во время ветров юго-западного направления. Ледостав устанавливается в декабре и удерживается до начала марта.

Среднесезонная температура воды за время проведения исследований колебалась от 18 до 18,6°С, достигая максимума 27-29°С в ивле. Периоды с температурой воды выше 20°С состовляли по годам от 67 до 99 дней, при сумме активных температур (выше 20°С) от 1721.4 до 2204,2 градусо-дней. Общая сумма тепла за период выращивания колебалась от 3150,6 до 3534,4 градусо-дней. Таким образом, водоем по температурному режиму вполне благоприятен для выращивания карпа и растительноядных рыб в садках.

Основные гидрохимические показатели воды били в пределах принятых в рыбоводстве норм. Количество растворенного в воде кислорода колебалось от 7,2 до 11,4 кг/л. Минимальные значения 4.8 мг/л наблидали в период наиболее высокой температуры воды 27-29°C.

Непостоянство гидрологического режима реки Днестр приводит к резким колебаниям уровня воды водохранилища и Гоянского залива, что сказывается на составе и степени количественного развития отдельных видов и групп гидробионтов. Несмотря на это в заливе видовое разнообразие фитопланитона и зоопланитона достигает максимума (Иванов, 1962), биомасса и численность фито- и зооп-

ланчтона непосредственно в садках и в районе установки садков были обильными. Численность фитопланктона достигала 31,5 млн/кл/л при бионассе 1492 мг/л в сезон 1989 г. Зоопланктон залива представлен озерными видаки коловраток, иладошер и колепод. По видовому составу преобладали Keratella quadrata, Bosmina longirostris, Daphnia longispina, Daphnia moina, Nauplii, Наибельвая биомасса зоопланитона составила 21,24 г/м3. В целом вибранный для проведения работ водоем может оцениваться как типичний для данной зоны, а получению данные использовани как нормативные.

Вирашивание карпа в садиах, установлениих в водоеме с естественним технературнии режимом

эфектичесты вирачивания товарной рибы в садках оценивалась нами превде эсего по виходу продукции, которах зависит от воличества и конечной чассы вирачираемых риб.

Аля выяснения предела увеличения плотности посадки карпа в садках, с челья получения товарной рыбы нормативной массы, испытали плотности от 25 де 300 вт/м2 при мехедной массы годовика 30 годом.1).

Проведенные мосладования поназали, что с увеличением плотности поседии с 28 до 700 кг/ки моначная масса сникается с 521 до 236 г. Максимальные величини относительного среднесутсчного прирости наследени в первый весяц вырамивания, по мере увеличения плотности посадки величина помротта сникается с 3,38 до 2,8%. Разликии по массе у марка, не хармантем опита отночаются в вале, в и монау се, мода вырамиваемия судествения увеличиваются.

Выраживание карпа в садках в конокультуре

Таблица 1

Содержание	Плотность	Средняя масса г.	acca F.	Прирост	0CT	Выживаемость	Выход	Затраты
OTNTA	IIICCARFIN	исходная	конечная	абсолют- ный,г.	абсолют- Относител. ный,г. сред.сут.2	×	HT/M2	
Определения	53	30	521	491	0,99	98	12,4	3,25
TOTHOCTH	8	8	486	456	86,0	35,2	23.2	3,15
HOCARCH	2 12	8	468	438	0,97	94	33,0	3,14
*	. 8	R	442	412	96,0	92,4	40,4	2,93
	125	29	425	332	96.0	88	47.2	2,97
	150	30	405	372	0,95	82	25,6	3,2
	175	8	379	349	0,95	98	56,9	3,5
	200	8	374	344	98.0	67,5	64.9	3,40
	225	8	340	310	0,93	87.2	8,99	4,3
	250	30	326	236	0,93	0,08	70,1	4,02
	275	20	306	.276	0,91	85,2	71.7	3,5
	300	28	536	592	06.0	83,0	. 74,2	3,6
Опполопения	150	50	353	333	0,99	0,08	45,5	3,24
MCXOTHOG	150	8	395	365	0,97	91.0	48,1	3,18
MALCH	150	45	123	376	0.89	63,0	52,1	3,1
DOCATOWHOTO	120.	2 23	460	400	0,85	63,0	6.93	3,35
материала	150	98	488	408	0,79	84,0	61,2	3,5
		5						

Нормативная конечная масса карпа получена при плотности посадки 25-150 шт/м2, в вариантах с более високой плотностью посадки была чиже на 8-35%.

Выход продукции с увеличением плотности посадки возрастает с 12,4 до 74,2 кг:м2. Полученные результаты свидетельствуют, что в условиях У-й рыбоводной зоны наиболее рационально применять плотность посадки 150 мт/м2. При этой плотности двухлетки карпа достигают нормативной масси, а выход составляет 52,6 кг/м2. Применение плотностей посадки 25-125 мт/м2, при которых также достигдется нормативная кснечная масса нецелесообразно, так как выход продукции существенно меньме.

При равных условиях выраживания выход и качество продукции зависит от исходной массы посадочного материала. Для проведения спытов отобраны годовики карпа пяти весовых групп (табл. 1). Елотность посадки карпа в садки принята одинаковой _ 150 mt/w2.

Наибольший темп роста наблюдали во всех вариантах в мае-июне. Максимальные величины относительно среднесуточного прироста снижались с увеличением исходной массы с 3.5 до 2.8%. В дальнейшем интенсивность роста равномерно снижалась и составила в средчем за сезен 0.97- 0.79%.

По мере увеличения исходной масси посадочного материала увеличивается абсолютный прирост, а соответственно и выход продукции (табл.1). Как показали наши эксперименти, использование посадочного материала карпа исходной масси нише 30 г для садкового виращивания нецелесообразно. Поскольку на данном этапе развития садкового рибоводства основной целья является увеличение выхода продукции, необходимо использовать годовиков карпа исходного массой 45-60 г, что позволит увеличить виход продукции и понучить при этом карпа более высокой товарной кондиции. При этом

необходимо конечно учитывать и себестоимость посадочного материала разных весовых категорий.

Так как степень эффективности использования искусственных кормов зависит от правильного выбора режима кормления, мы изучали эффективность трех-, мести- и двенадцатикратного кормления карпа в садках. Плотность посадки в этих опытах была 175 мт/м2 при исходной массе годовика 45 г.

Опыты показали, что при увеличении кратности корыления увеличивается конечная масса и выход продукции, а затраты корма снижаются. Выход продукции при 12-кратном корылении оказался выже на 35-37%, чем при трех, и на 14-17%, чем при 6-кратном. Затраты коры снижаются с 4,56 при трех- до 3,12 при 12-кратном. При 12-кратном режиме корыления двухлетки карпа хорошо росли и эффективно использовали искусственные корма, поэтому этот режим корыления был принят за основу при проведении дальнейших исследований.

Для выяснения эффективности использования различных кормов ОПК -1, РГЗК-1, РГМ-8в, К-110 _ провели опыт при плотности посадки годовиков карпа 200 мт/м2 с исходной массой 45 г. Как и следовало омидать, по мере улучшения качества рациона, конечная масса карпа и выход рыбной продукции увеличились, а затраты корма на прирост снизились. Использование комбикормов типа ОПК-1 и РГМ-8в позволили сократить затраты корма на 40-45%, при этом выход продукции был выше на 37-46%, чем при использовании комбикорма К-110.

Бырацивание карпа и растительноядных рыб в поликультуре в садках

سر **

Растительноядние риби обладают высокой потенцией роста, а особенности питания толстолобиков поэволяют полагать возможность их подожительного влияния на уровежь эвтрофирования водоемов. Чказанные обстоятельства поэволяют предложить растительноядных риб в качестве объекта садкового выраживания в поликультуре с карпом.

Существенное эначение при разработке технологии вираживания растительноядных рыб в поликультуре с карпом имеет выяснение влияния температурного режима на рост рыб. Опыты показали, что результаты выраживания рыбы изменяются в зависимости от особенностей погодных условий, степени обилия тепла и ее распределения в течение каждого периода вегетаций. Анализ роста рыбы за 5 лет свидетельствует, что температурные условия имеют определяющее значение.

В 1988 году среднесезонная температура воды была 18.3° С при длительности периода с оптимальной для роста рыбы температурой воды 20° С _ 93 дней. Общая сумма тепла составила 3528 градусов. Абсолютный среднесуточный прирост карпа колебался от 0.8-4.6 г. пестрого толстолобика _ от 0.5-3.5 г. белого толстолобика _ 0.6 до 2.8 г. Максимальные значения были отмечены в июле при температуре воды $24-27.4^{\circ}$ С. Максимальные значения абсолютного среднесуточного прироста в 1989 г. также отмечены в июле. За период вырамивания колебались от 0.7 г до 4.4 г у карпа, у белого толстолобика от 0.6-2.2г, у пестрого толстолобика от 0.6 до 3.5г. Среднесезонная температура воды 18.6° С, а сумма тепла 3208 градусо-дней.

В 1990 г. общая сумма тепла за сезон вырамивания составляла 3534.4 градусо-дней. Абсолютный среднесуточный прирост карпа колебался от 0.2 до 4.6 г. пестрого толстолобика — от 0.4 до 5.8 г. белого — от 0.3 до 5.4 г. достигая максимальных значений в ишле-августе. Увеличение исходной масси посадочного материала растительноядных рыб сумественно повлияло на конечную массу товарной рыбы. Товарной массы 400 г растительноядные рыбы доститли в середине августа. а к концу сезона масса увеличились до 514 –518 г.

В 1991 году рост карпа и растительноядних риб был равномерным. Конечная масса карпа, пестрого и белого толстолобиков достигла 419, 491 и 468 г. Опыты показали, что в условиях 9-й рыбоводной зоны, где период с температурой воды выше 20°С 75-99 дней, при сумме тепла 3208 -3534 градусо-дней при исходной массе 30-50 г. карп и растительноядные рыбы достигают нормативной конечной массы.

Изучена зависимость выхода рыбной продукции из садков при разной плотности посадки и видовом соотношении белого и пестрого толстолобиков при выращивании их в поликультуре с карпом (табл. 2). С увеличением плотности посадки как белого толстолобика так и пестрого скорость их роста снижается, различия начинаются обычно в ижле и к концу периода выращивания увеличиваются.

Посадка в садки белого и пестрого толстолобиков по принятой нами видовой структуре и количественному соотношению обеспечили увеличение выхода продукции на 9-36% или на 2,9-19,9 кг/м2 по сравнению с выращиванием карпа в монокультуре. Максимальный выход продукции при достижении конечной нормативной массы всеми видами _ 72,7 кг/м2 получили при плотности посадки пестрого 25 мт/м2 и белого толстолобиков 25 мт/м2. Положительное влияние на

Тэблица 2 Результати выраживания карпа и растительноящих риб в поликультуре

				1				14	-				_						
Затрати корма				3,02	3,12	3,08	2,32	3,06	3,07	3,12	3.08	3,37	3,3	3,18	F. 3		3.54	3,42	3,36
2		OOUNG		54,6	51,6	58,4	65.7	67.5	67.4	72,7	64.7	68,1	99,9	48,1	51,2		54.3	59,3	68,1
Ун. КТ/182		L/0		1	2,9	3,4	5,1	4,8	ص در	တ တ		4,9	1		1		2,5	4.	ai.
Виход		1/1		4,5					4.7					I	I			4,5	
E		карп		50,1	48,7	50,5	55,7	53,5	53,5	52,8	53,3	50,7	48,9	48,1	51.2		48.1	51,4	56,8
		1/9			330	375	518	523	476	421		518	1		1	материала	327	382	463
Конечная	; [1/1		463		423	515	484	200	425	405	427	364	1			380	437	483
Кон		Kapn				410					397			395	405		409	409	422
, .	. L	1/0		1	8	35	97	92,5	98,3	97,8		93,5			!	посадочного м		-	
Виживае- мость 2		11/1		97,5	1	96,5	36,5	94,5	93,2	94.0	94,6	97,3	36,5	1	1.		1	ı	1
		карп		81,7	80,2	82,0	88,3	87,2	86.8	98.0	89,4	84.2	87,1	81,0	82,0	Kacca		1	1
	bea. ToucT		исход масса	ı	15	53	40	49	\$	\$	ı	\$	1	1		Исходиза	15	5	\$
	бел.		MT/M2	ì	2	9	2	2	9	ន	1	2	!	1	1		•	2	
Зарыбленив	пестр толст		исход. масса	30	1	30	S	යි	S	ន	ಜ	යි	ය	1	1		ຂ	8	S)
34	пестр			9	1	유	2	ຂ	9	ধ্য	೫	8	ස	. 1	1		101	2	9
	E		исход. шт/и2 масса	88	30	೫	\$	9	40	9	\$	\$	2	8	\$		40	&	8
	Карп		WT/M2	120	120	120	82	120	061	55	120	22	52	55	<u>\$</u>	•	150	120	120
Ba pri aut					2	٣,	4	c)	9	~	œ	on	9	=	2		_	~	М

0/1-6ыля талстолойж 1/1- пестрый толстолойж

рест карпа растительноядние риби оказали при плотности посадки 10-20 иг/м2. При этих плотностях посадки конечная масса карпа оказалась на 5-16 г. а виход продукции на 1,6-4.5 кг/м2 виме, чем в монокультуре (табл. 2). Увеличение плотности посадки пестрого толстолобика до 30-50 иг/м2 отрицательно повлияло на рост карпа.

Одинаковая интенсивность роста карпа при дополнительной посадке по 10-25 мт/м2 растительноядных рыб позволяет предположить, что плотности посадки 25 мт/м2 белого и 25 мт/м2 пестрого толстолобиков при вырамивании в поликультуре с карпом в садках являются оптимальными.

При прочих равных условиях конечная масса двухлетков зависит от исходной массы годовиков. Увеличение исходной массы годовиков белого толстолобика с 15 до 40 г обеспечивает в условиях садкового выраживания увеличение абсолютного прироста двухлетков на 143 г. Выход продукции и выживаемость были выже соответственно на 32 и 52.

Аналогичную генденцию изменения показателей наблюдали при увеличении исходной массы годовиков пестрого толстолобика. Конечная масса двухлетков в садках при исходной массе 30 и 50_г, была выше на 77 и 109 г. чем при исходной массе 20 г.

Мы сочли возможным принять в качестве нормативной исходной массы годовиков белого и пестрого толстолобиков 40-50 г. Использование годовиков с такой исходной массой позволит увеличить выход рыбной продукции и существенно улучшить качество получаемой товарной продукции.

При выраживании карпа, белого и пестрого толстолобиков в поликультуре выявлены определенные закономерности роста рыб в зависимости от плотности посадки, соотномения видов в поликуль-

туре, исходной масси посадочного материала и других факторов. При этом анализировали абсолютние и относительные приросты, являющиеся наиболее распространенными показателями.

Для более глубокого анализа роста при вираживании карпа и растительноядних рыб в садках использовали также показатель общего продукционного козффициента массонакопления. Установлено, что скорость роста, оцениваемая через козффициент массонакопления (Км) у белого и пестрого толстолобиков несколько выже, чем у карпа. У белого толстолобика (Км) колебался от 0.06 до 0.08, пестрого от 0.06 до 0.079, у карпа от 0.056 до 0.065. Изменение среднесезонных козффициентов массонакопления определялись плотностью посадки, исходной массой, температурой воды и кормообеспеченностью.

При анализе структуры факторов, лимитирующих рост рыб в наших экспериментах, оказалось, что температура воды сильнее тормозит рост белого и пестрого толстолобиков, и меньше карпа. Все прочие факторы, которые мы относили к кормообеспеченности, сильнее тормозили рост карпа, затем пестрого и меньше всего лимитировали рост белого толстолобика.

При анализе характера изменения кормообеспеченности рыб внутри сезона отметили резкие отличия его у белого толстолобика от пестрого толстолобика и карпа.

Лучине условия для роста белого толстолобика были в начале и в конце периода вырацивания. В то же время лучине условия для роста карпа и пестрого толстолобика оказались как раз в середине периода вырацивания (рис. 1). В разные периоды вырацивания они приходились на разное время и женялись относительно друг друга, как правило, в противоположных направлениях, что свидетельствует о наличии конкуренции между карпом и пестрым толстолобиком. При

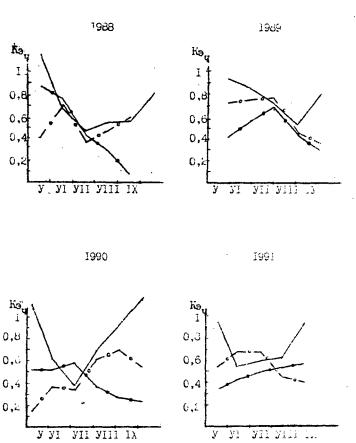


Рис. І. Степень комфортности условий выраживания внутри сезона за годы исследования для разных видов по "кормообеспеченности".

— селый толстолобик—пестрый толстолобик—карп

кар — коэффициент экологический частный.

кормлении карпа высокобелковыми комбикормами с низким процентом крошимости гранул преимущество получал карп,при ухуджении качества (при увеличении % крошимости)-пестрый толстолобик. Исходя из этого следует отметить, что при садковом выращивании карпа и пестрого толстолобика в поликультуре имеется возможность управления их ростом посредством использования кормов с различной степенью крошимости.

Для определения влияния температуры на рост белого, пестрого толстолобиков и карпа рассчитанные значения Кы разнесли по температуре и сравнили с функцией продуктивности действия температуры, данной в работе С.К.Купинского (1987). Анализ показывает, что рост карпа и пестрого толстолобика в условиях садкового выращивания находится в пределах значений, описанных в литературе. Рост белого толстолобика наблидали при более низких температурах. В целом при выращивании в садках, установленных в водоеме с естественным режимом температуры, карп, белый и пестрый толстолобики не смогли реализовать свою потенцию роста. Степень реализации потенции роста не превыжает 50%.

Так как обеспеченность пищей растительноидных риб является лимитирующим фактором их роста, им изчали питание и пищевые взаимоотномения их в условиях садков.

Основу питания карпа в садках составлял искусственний корм 91- 97%, в меньшей степени зоопланктон 3-9%. Зоопланктон встречали в пищевом комке в утренние часи, преимущественно в ишле-автусте месяцев. Индекси наполнения кишечников в течение сезона колебались от 94 до 341 о/ооо.

Белий толстолобик при выращиваням в садках проявил себя как типичный фитопланктофаг. В пищевом комке преобладали фитопланктон 82-91 % и детрит 9-16%.Комбикоры, в том числе и пилевидные фракции, присутствовал в незначительном количестве. Основу питания пестрого толстолобика составляли зоопланктон, фитопланктон и детрит. В пищевси комке преобладали детрит 48-60%, фитопланктон до 26%, на доле зоопланктона приходилось до 25%. Пилевидные фракции комбикорма составляли до 2,5% Индексы наполнения кимечников колебались от 174 до 395 о/ооо.

Полученные данные свидетельствуют о целесообразности выращивания белого толстолобика в садках в поликультуре с карпом, с целью утилизации избиточного количества фитопланктона и детрита. Конкуренция изеа пиши между этими видами в поликультуре отсутствует. Пижевие отножения между карпом и пестрым толстолобиком более напряженные в связи со сходним питанием зоопланктоном и комбикормом.

Влияние садкового хозяйства на лекальное загрязнение водоема

Вирадирание риби в садках, установленных в Гоянском заливе, привело к локальному и кратковременному загрязнения води и донних отлогений органическими рефестании. Однако, накопление органическим вежеств в районе расположения садков в натих условиях не наблюдается благодаря их виносу к рассемванию течением, интелеменому разложение на магдок конкретном участке водоема. Небяльное по пложади (до 1000 м2) садковое хозяйство и кратковременная эксплуатация их (5-6 месялев в год) не хогут стрицательно ловящить на гидромимический режим водоема.

Зффективность и перспективи виращивания риби в садмах в водоемах комплексного значения

Производство товарной рябы в Гоянском садковом хозяйстве увеличилось с 5.8 т в 1987 г. до 73.5 т в 1991 г. Выход товарной рябы увеличился за счет расширения садковых площадей и применения интенсификационных мероприятий: выбор оптимального режима кормления, применения комбинированного метода кормления и применения поликультуры. Опытные работы показалы возможность увеличения выхода продукции на 5-36% или 2.9-19,9 кг/м2 за счет использования поликультуры, при одновременном снижении себестоимости от 10 до 30,36 руб./цн. Высокая себестоимость выращенной в садках товарной рыбы объясняется большими затратами на комбикорма, посадочный материалж амортизацию основных фондов.

Важнейзими резервами увеличения производства товарной рыбы и снижения ее себестоимости являются использование белого и пестрого толстолобиков как объектов садкового выращивания, строгое соблюдение биотехники кормления карпа и дальнейшее совершенствование механизации и автоматизации производственных процессов.

ЗАКЛЮЧЕНИЕ

Проведени опитние работи по вираживанию карпа, белого и пестрого толстолобиков в садках, установленних в водоеже с естественним температурним режимом, расположенном в У-й зоне рибоводства. Длительность периода вегетации с температурой води вике 20°C составляло от 57 до 99 дней. Что свидетельствует в возмож-

ности получения товарной продукции карпа и растительноядных рыб.

В процессе экспериментов впервые изучены особенности роста карпа, белого и пестрого толстолобиков при выращивании в садках, установленных в водоеме с естественных температурным режимом в зависиости от плотности посадки, сотношения видоь в поликультуре, исходной массы посадочного материала и температуры воды. Исследовано питание и пижевые взаимоотношения видов в поликультуре. Установленные закономерности использованы при разработке нормативно-технологических документов.

На основе анализа материалов выполненных исследований можно сделать следуване выводы и практические рекомендации:

1. При вирацивании карпа в монокультуре для получения товарной рыбы стандартной масси целесообразно применять плотность посадки 150 шт/м2, что обеспечивает выход продукции 50-52,6 кг/м2. Дополнительная посадка к карпу годовиков белого и пестрого по 25 шт/м2 каждого вида позволяет увеличить выход продукции на 36% (по 74.2 кг/м2).

Для гарантии получения товарной рыбы стандартной масси следует использовать годовиков карпа массой 30-60 г, белого и пастрого толстолобиков 40-50 г.

- 2. Необходина организация многоразового кормления карпа. При ураличения кратности кормления улучшается рост карпа, увеличивается выход продукции, синдартся ватрати корма на прирост карпа. При 6-кратном кормлении на 22%, а при 12-кратном на 33:1% по сравнения с 3-разовим.
- 3. Средняя за период вегетации скорость роста, одениваемая через кояфрациент кассонакондения (Ки), у всех выразираемых в полкиультуре видов различается незначительно. Скорость роста растительномите

толстолобика колебался от 0, 06 до 0,08, у пестрого толсталобика 0,06-0,079, у карпа от 0,056 до 0,067. Понижение температуры воды сильнее тормозит рост белого и пестрого толстолобиков, и в меньмей степени карпа.

- 4. При выращивании в садках, установленных в водоеме с естественным режимом температуры все виды не могли реализовать свою потенции роста. Степень реализации потенции роста не превывает 50%.
- 5. Карп в садках питается преимущественно комбикормом. В отдельные периоды в пищевом комке его встречается зоопланктон (от 2 до 92). Белий толстолобик питается фитопланктоном и детритом, конкуренция его в питании с карпом отсуствует. Основу пищи пестрого толстолобика составляет фитопланктон, детрит, зоопланктон и пылевидные фракции комбикорма. Возможна конкуренция с карпом в потреблении зоопланктона. Увеличение плотности посадки пестрого толстолобика от 30 до 50 мт/м2 вызывает ухудшение роста обоих видов. Обеспеченность пестрого толстолобика пищей зависит также от степени кромимости задаваемых карпу комбикормов.
- 6. Вирацивание раби в садках, установленных в естественных водоемах, приводит к кратковременному локальному загрязнению води и донных отложений органическими оседествеми. Однако накопление органических вешеств в районе размечения садков не' наблюдатеся вследствие их выноса и рассемвания течением. Сравкительно небольшие объеми выращивания риби и кратковременная эксплуатация садковых хозяйств (5-6 месяцев) не могут существенно повлиять на гидрохимический режим крупного водоема.

СПИСОК РАБОТ. ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Леука П.П., Кучеренко Л.А. Первые опиты вырамивания товарного карпа в садках в ведоемах молдавской ССР с естественным температурным режимом. // Тезисы докладов в Всесовзного совещания "Садковсе рыбоводство в естественных водоемах", М., 1988. с. 35-36.

Михеев В.П., Лобченко В.В., Кучеренко Л.А., Леука П.П. и др. Норми выращивания карпа и радужной форели в садках в водоемах с естественной температурой води (в зональном аспекте). М., 1988. ВНИИПРХ.

Кучеренко Л.А., Леука П.П., Голых Т.Н. Выращивание товарного карпа в садках водоема с естественных термическим режимом. // Интенсификация выращивания товарной рыбы в Молдавии. — Кишинев, Етиинца, 1989. с. 7- 12.

Лобченко В.В., Кучеренко Л.А., Леука П.П. Выращивание товарной рыбы в садках как одно из звеньев биотехнического процесса. // Тезисы докладов на Всесокзном совещании по новым объектам и новым технологиям рыбоводства на теплых водах. М. 1989, с. 40-41.

Леука П.В., Кучеренко Л.А. Выраживание рыбы в садках по индустриальной тахиологии. Информационный листок N 87. МолдНИТИ. Кытинев, 1989, с. 1-5.

Тромблиний И.Д., Мому В.М., Маня В.М., Каховский А.Е., Леука П.П. Заболевания карпа в саднових хозяйствах Молдагик в условнях термального водоека и водохранилища с естественним температурния режимом. IY Всесованое совежание по р/х использованию теплих вод. (Ситябрь, 1990, г. Курчатов Курской обл.) Тезиси докладов. Е., 1990, с. 174-176. Леука П.П., Кучеренко Л.А., Кожукарь И.Ф. Вираживание карпа в поликультуре с растительноядними рибами в садках. установленних в водоемах с естественним температурным режимом.// Сб. науч. тр. Растительноядние риби и новие объекти рибоводства и акклиматизации. М.ВНИИПРХ. 1991. с. 74-78.

Леука П.П., Кучеренко Л.А., Голых Т.Н. Опит вырашивания карпа в садках, установленных в водоеме комплексного назначения. // Воспроизводств и выращивание рыб в водоемах Молдовы. Кишинев, Этиннца, 1991, с. 19-23.