1-26817

министерство сельского хозяиства СССР

МОСКОВСКАЯ ОРДЕНА ЛЕНИНА
И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ИМЕНИ К. А. ТИМИРЯЗЕВА

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИРРИГАЦИОННОГО РЫБОВОДСТВА (ВНИИР)

Кафедра прудового рыбоводства

На правах рукописи

СИМ ДО ТХЕК

ЭФФЕКТИВНОСТЬ ЗАВОДСКОГО СПОСОБА РАЗВЕДЕНИЯ КАРПА И САЗАНА И ПУТИ ЕГО СОВЕРШЕНСТВОВАНИЯ

(06.02.01 — Разведение и селекция сельскохозяйственных животных)

Автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук lajon- Fazlegenne

Работа выполнена на кафедре прудового рыбоводства Московской ордена Ленина и ордена Трудового Красного Знамени сельскохозяйственной академии им. К. А. Тимирязева.

Научный руководитель — заслуженный деятель науки РСФСР, доктор сельскохозяйственных наук, профессор Ф. Г. Мартышев , научный консультант — кандидат биологических наук И. М. Анисимова.

Официальные оппоненты: доктор биологических наук Г. Д. Поляков, кандидат биологических наук А. П. Иванов.

Ведущее предприятие — Управление прудового рыбоводства Министерства сельского хозяйства РСФСР.

в

масов на заседании Специализированного совета по разведению и селекции сельскохозяйственных животных (шифр Д 120.35.05) при Московской сельскохозяйственной академии им. К. А. Тимирязева.

Адрес: 127550, г. Москва, И-550, ул. Тимирязевская, 49, Ученый совет ТСХА.

С диссертацией можно ознакомиться в ЦНБ ТСХА.

Ученый секретарь Специализированного совета доцент

В. А. АЛЕКСАНДРОВ

і. ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Для успешного решения задач, выдвинутых партней и правительством по значительному увеличению производства прудовой рыбы, большое значение имеет дальнейшая разработка технологии производства рыбы, перевод рыбоводства, как и других отраслей народного хо-

зяйства, на промышленную основу.

В последние годы в прудовых хозяйствах СССР и за рубежом получил признание заводской способ воспроизводства карпа и сазана, который имеет ряд преимуществ по сравнению с традиционным воспроизводством в прудах. Однако, несмотря на достигнутые успехи, заводской способ отличается весьма неустойчивыми результатами. В целом ряде хозяйств наблюдается очень низкий процент созревания и массовая гибель производителей после гипофизарной инъекции, низкий процент оплодотворения икры, большой отход икры и молоди, что в целом значительно снижает эффективность заводского воспроизводства, указывает на неотработанность отдельных звеньев и необходимость их совершенствования на основе учета биологических особенностей объекта.

Цель работы. На основании анализа деятельности рыбхозов в разных климатических зонах оценить приемы, применяемые в каждом звене технологического цикла заводского воспроизводства, обобщить и углубить исследования, направленные на совершенствование отдельных звеньев процесса и выявление морфобнологических особенностей производителей

при использовании их в заводских условиях.

Научная новизна. Впервые проведено комплексное изучение вопросов, связанных с совершенствованием технологии заводского воспроизводства карпа и сазана. Показаны эффективность использования при заводском способе производителей в зависимости от размеров, возраста, происхождения, от температуры, кратности и дозировки гипофизарных инъекций, особенности хода инкубации икры в связи со способом обесклеивания, системой инкубационных аппаратов, режимом инкубации, изучены морфобнологические и рыбоводные пока-

Non de nayanan thinnotena Meen, opp. Senuna contros. auen, hold Tornoscoa затели молоди карпа, полученной традиционным прудовым и заподским способами в ранние сроки при подращивании ее в мальковых и выращивании в выростных прудах. Полученные данные показывают, что при заводском способе особенно сильно проявляется связь всех звеньев технологического цикла.

Практическая значимость. Широкие возможности завод-

Практическая значимость. Широкие возможности заводской технологии в карповодстве в настоящее время не реализуются из за несовершенства отдельных звеньев технологиче-

ского процесса.

Сравнительные данные, полученные автором в производственных масштабах по ходу технологического процесса воспроизводства карпа и сазана, как и касающиеся морфобиологнческих свойств производителей, используемых в условнях заводского способа, поназывают, что применяемые приемы технологического цикла неравноценны и свидетельствуют о необходимости дальнейшего совершенствования отдельных звеньев; выводы и предложения способствуют повышению эффективности заводского способа воспроизводства в целом.

Апробация работы. Материалы по внедрению заводского воспроизводства сазана на ЦРЗ (полученные при непосредственном участии автора) демоистрировались на ВДНХ; хозяйство за высшие показатели награждено медалью. Материалы работы доложены на расширенном межлабораторном заседании ВНИИ ирригационного рыбоводства, межкафедральном заседании зооинженерного факультета ТСХА. По результатам выполненных исследований опубликовано 5 научных статей.

Объем работы. Диссертационная работа включает следующие разделы: введение, литературный обзор, схему опыта, материал и методику работы, результаты собственных исследований по воспроизводству карпа и сазана в прудовых условиях и заводским способом, заключение, выводы и предложения, список литературы и приложения Материал изложен на 181 странице машинописного текста, содержит 55 таблиц и 2 рисунка. Список литературы включает 349 источников, в том числе 48 иностранных.

II. СХЕМА ОПЫТА, МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИИ

Работы по воспроизводству сазана и карпа заводским способом и в нерестовых прудах проводились автором на Цимлянском рыбоводном заводе ЦРЗ (1964—1970), в рыбхозе «Ергенинский» (1970—1971) Волгоградской области, в рыбхозе «Воронка» (1972—1977) Рязанской области, на опытнопроизводственной базе «Храпуново» (1979) Московской области, в рыбхозе «Шостка» (1979) Калининской области, рыбстанции «Павловская» (1979) Краснодарского края (табл. 1). На ЦРЗ впервые в Советском Союзе полностью внедрена в производство биотехника искусственного получения личинок сазана.

При сборе материала автор участвовал в комплексных исследованиях, проводимых лабораторией ГосНИОРХа по освоению и совершенствованию биотехники разведения карповых рыб на ЦРЗ. Дальнейшие исследования и внедрение заводского способа проводились в рыбосовхозе «Ергенинский» при обычной нерестовой температуре и в рыбопитомнике «Воронка», а также в других хозяйствах—с применением электроподогрева воды в период выдерживания производителей перед получением половых продуктов, инкубации икры и выдерживании личинок карпа.

При проведении работ были использованы следующие ме-

тодики.

Созревание половых продуктов у производителей стимулировали при помощи гипофизарной инъекции по методу Н. Л. Гербильского. При испытании разовой инъекции дозугипофиза определяли из расчета 5—6 мг/кг массы рыбы, при дробной—1 мг/кг в предварительной и 4—5 мг/кг в разрешающей инъекции.

Осеменение, обесклеивание и инкубация икры выполнялись по инструкции, разработанной А. Г. Конрадтом и А. М. Сахаровым и по методике, предложенной С. Г. Сонным. Кроме того, испытаны различные обесклеивающие вещества

(ПАСГ, речной ил, молоко, тальк, прудовая вода).

Инкубация икры проходила в инкубационном цехе или во временно построенном помещении в полевых условиях; испытаны аппараты Вейса емкостью 8 л и аппараты ВНИИПРХ емкостью 100 и 200 л для обесклеенной икры и лоточные аппараты Садова—Коханской для клейкой икры. Личинок выдерживали в капроновых садках из газа № 16—18, которые устанавливались в лотковом бассейне, ваннах и в аппаратах типа ВНИИПРХ емкостью 200 литров.

Подращивание как «заводской» молоди, так и полученной в нерестовых прудах производили в мальковых прудах (площадь 1 га каждый) при плотности посадки от 250 до 1500 тыс. шт/га в течение 10—30 дней; затем молодь пере-

саживали в выростные пруды.

Нерест производителей сазана и карпа во всех хозяйствах проводили в нерестовых прудах при плотности посадки 2 гнезда на 0,1 га; соотношение производителей в гнезде—1°—2°, при заводском способе—3°—1°.

Для характеристики икринок определены: диаметр их до и после набухания, количество икринок в 1 мл, процент раз-

Вид, группа рыб	Место работы	Способ получения молоди	Инкубация икры	Способ выращивания молоди	Дополнительные опыты
Сазай	ЦРЗ	Еестественный нерест произво- дителей Заводской способ	Нерестовые пруды Аппараты Вейса Аппараты ВНИИПРХ	Выращивание сего- летков с подращи- вапием в малько- вых прудах	а) разовые инъекции производителей 6) обесклеивание икры ПАСГ
Карп	Рыбхоз «Воронка»	Естественный нерест Заводской способ	Нерестовые пруды Аппараты Вейса	Выращивание сего- летков без подра- щивания /	а) обескленванис икры: ПАСГ, молоко, тальк, вода б) разовые и дробные инъекции в) инкубация икры без подогрева воды и с подогревом
Kapn	Рыбосовхоз «Ергенинский»	Есстественный нерест Заводской способ	Нерестовые пруды Аппараты Вейса	Выращивание сего- летков без подра- щивания	а) разовая инъекция (б) обсекленвание икры ПАСГ

138 (1865) (2.18			可恢复数		PARTIES NO
Карп	Рыбстанция «Павловская»	Заводской способ	Аппараты ВНИИПРХ		разная кратность инъекции обескленвание икры молоком разная емкость аппаратов
Карл (3) груп- пы, разные по проис- хождению	ОПБ «Храпуново»	Заводской способ	Аппараты Садова — Қохан- ской Аппараты Вейса) разная кратность инъекций) инкубация икры без обесклеивания) инкубация икры с по- догревом воды
*	Рыбосовхоз «Шостка»	Заводской способ	Аппараты Вейса	a 6) разная кратность инъекции обесклеивание икры молоком

вивающейся иком во время инкубации, а при выдерживани

личинок в садках - их отход.

 Проведение работы в призводственных условиях позволило использовать весь имеющийся в хозяйствах материал в следующем объеме: производителей — 2250 шт.: икры — 900 млн. шт., личинок — 450 млн. шт., сеголетков — 225 млн. штук. При оценке производителей учитывали показатели: внешнее состояние, зоологическая длина, масса рыбы, возраст, коэффициент упитанности (последний определялся по формуле Фультона, модифицированной во ВНИИПРХе). Плодовитость самок (индивидуальную, относительную и рабочую) определя-

ли общепринятым способом (Правдин, 1967).

Оценка качества потомства, полученного при разных способах инкубации икры, дана по личинкам в возрасте трех суток и молоди, выращиваемой в прудах. В течение вегетационного периода прослежен весовой и линейный рост молоди сазана и карпа, полученной заводским способом и при нерести характеристики сеголетков в прудах. Для морфологической использованы схемы и индексы, предложенные Правдиным (1967): химический состав тела сеголетков (жир, белок и минеральные вещества) определяли по общепринятым в зоотехнии методикам (Лукашик и Тащилин, 1954). ная скорость прироста и средний суточный прирост массы тела сеголетков за периоды между контрольными ловами высчитаны по формулам Броди и В. Винберга.

В 1979 г. были проведены исследования по выяснению зависимости инкубации икры от происхождения производителей. В хозяйствах «Храпуново» и «Шостка» (в производственных условиях) была проинкубирована икра от производите-

лей, генетически различных.

• Фоновые определения в инкубационных аппаратах и прудах (термика, газовый и солевой состав воды, состав естественной пищевой базы) и контроль за состоянием рыбы проводили систематически в течение инкубации икры и выращивания молоди в стандартные сроки по общепринятым в рыбоводстве методикам (Привезенцев, 1973; Липин, 1950). Основные биометрические данные, полученные в ходе эксперимен--та, обработаны статистически по Н. А. Плохинскому (1961):

На Воспроизводство карпа и сазана в прудовых условиях и заводским способом:

Особенность термического и гидрохимического режима при инкубации икры в нерестовых прудах и в инкубационных аппаратах. При разведении карпа и сазана средняя температура воды (1964—1972) по многолетним данным в Волгоградской области (ЦРЗ, рыбхоз «Ергенинский») составляет 7—8° С. Нерестовая температура обычно наступает в первой декаде мая и колеблется от 15 до 20° С. В условиях Рязанской и Московской областей нерестовая температура бывает обычно в конце мая, т. е. намного позже, чем в Волгоградской области.

При инкубации икры в естественных условиях температура воды в прудах составляла 12—22,5° С, при заводском способе при подогреве воды до 19—20° С и в среднем за 5 лет наблюдений была на 4,5° С выше. Суточные колебания температуры воды при подогреве незначительны. В период выращивания ранней молоди температурный режим был более благоприятным. Вегетационный период ранней «заводской» молоди длился на 345—574 градусо-дней дольше, чем поздней молоди.

Концентрация кислорода в воде во время инкубации икры в аппаратах колебалась от 5,0 до 7,8 мг/л. в нерестовых прудах — от 8 до 1,28 мг/л, т. е. содержание кислорода в воде при использовании аппаратов было более благоприятным и не испытывало резких колебаний. Содержание свободной углекислоты и рН воды в аппаратах и нерестовых прудах было в пределах нормы. Газовый и солевой состав воды в течение выростного периода в прудах с ранней и поздней молодью в общем был сходным и находился в пределах, допустимых рыбоводными нормативами.

1. Заводское получение молоди

а) Характеристика производителей и овулировавшей икры

В процессе работы использованы производители в возрасте 4—12 лет с массой тела 2,5—12,0 кг. Отбор лучших производителей для получения половых продуктов приводит к снижению изменчивости размеров тела молоди и упитанности. Средняя плодовитость самок составила 93,6—744,0 тыс. икринок, индивидуальная плодовитость отдельных самок массой 8 кг — 1680 тыс, икринок. Рабочая плодовитость самок разного возраста колебалась от 228,8 до 445,0 тыс. штук. У средневозрастных производителей 7—8 лет массой 5—7 кг высокая рабочая плодовитость (до 728 тыс. икринок) сопровождается высоким процентом развития икры (до 96%), у молодых производителей эти показатели низки, у старшевозрастных — плодовитость высокая, но низкий процент развивающейся икры (табл. 2).

У средневозрастных производителей жизнестойкость икры колебалась меньше, чем в других группах (коэффициент вариации самый низкий). Наиболее разнокачественной по выживаемости была икра старых рыб. Отмечена зависимость

Воэрастная группа самок	Масса тела самок, кг	Биометри- ческие показателн	Длина тела самок, см	Количество икринок в 1 грамме	Рабочая пло- довитость, тыс. шт.	% развиваю- щейся икры
Впервые созревающие (4—5 лет)	2,5-4,0	M±m	57,7±1,66	803,0±24,87	210,2±36,02	61,3±3,2
		Cv, %,	10,8	10,72	64,14	19,59
Средневозрастные (6-9 лет)	5,0—7,0	М±т	69,2±1,61	671,3±30,55	462,1 ±79,81	81,7±2,78
		Cv, %	8,08	15,74	59,76	11,77
Старые (10-12 лет)	8,0—12,0	M±m	79,0±2,04	648.6 ± 16.15	439,6±71,36	49,6±4,11
		Cv, %	8,94	8,62	51,25	26,21

между возрастом самок и количеством отданной икры, причем в пределах указанных возрастных групп колебания невелики, но неодинаковые. Наибольшие — у молодых (Cv = 9,2), наименьшие — у старых (Cv = 4,8%) (табл. 3).

Таблица З Зависимость массы икры от возраста самок

	Bo Bo	эрастная гру	ппа 🕦
Показатели	впервые созревшие (4—5 лет)	молодые (5—6 лет)	средне- возрастные (6—9 лет)
Относительная рабочая М±т Сv, %	11,73±0,204 6,01	13,88±0,371 9,28	18,45±0,258 4,84

Индивидуальная изменчивость диаметра икринок невелика (1,29—1,62 мм, коэффициент вариации 4,5—9,5%, в среднем 5,5%). Различия между самками по изменчивости икры значительно выше (Cv=13,9%). В среднем в 1 п неоплодотворенной икры содержится 406—896 икринок, а в 1 мл набухшей икры — 64—228 икринок.

б) Зависимость сроков созревания производителей от кратности и дозировки гипофизарной инъекции, от температуры

Применение гипофизарных инъекций дает возможность получать зрелые половые продукты раньше, чем в естественных условиях. Оптимальными температурами для нормального созревания производителей сазана и карпа после гипофизарной инъекции следует признать температуру 18—20° С, при которой самки созревают на 90—100%. При температуре воды выше оптимальной (24—26° С) после гипофизарной инъекции часть самок перезревает или даже выбрасывает икру. Обязательным условием нормального созревания производителей является предварительное выдерживание их при температуре воды, близкой к нерестовой, в течение примерно 7—

Таблица 4
Влияние температуры воды на сроки созревания инъецированных производителей карпа

Паналадани			Темпе	ратура воды	₁, °C_	\$ 1 TO 1
Показатели		12-13	14—15,9	16—17,9	1819,9	20—21,5
Время со-	M±m 、	678±12,94	441i±9,33	354±10,29	318±5,84	291±5,43
градусо- часы	Cv, %	6,60	7,91	11,98	7,10	6,98

10 суток, а при подогреве воды до 17—22° С — в течение 4—5 суток. Длительность созревания самок после инъекции тесно связана с температурным режимом воды. Невысокие значения коэффициента вариации показывают на малую изменчивость самок в пределах указанных температур (табл. 4).

Кратность дозировки гипофизарных инъекций зависит от температуры: при температуре воды 15—18° С показателя, созревания оказываются выше на 10—30% при дробных инъекциях; при высокой температуре (24—26° С) дробные инъекции неэффективны. При температуре воды 17—22° С как дробные, так и разовые инъекции обеспечивают 90—100%-ное созревание производителей.

в) Зависимость оплодотворения икры и выхода личинок от способа обесклеивания

В разные годы процент оплодотворения икры был неодинаков, колеблясь в пределах 70—95%. Обнаружена высокая изменчивость производителей, особенно впервые созревающих и старых по оплодотворению икры, и лишь вариабельность средневозрастных производителей по этому показателю невелика (табл. 5).

Таблица 5
Зависимость оплодотворения икры от возраста производителей

·			Возрастна	ая группа	
Показателн		впервые созреваю- щие	молодые	средне- возрастные	старые
Оплодотво-	M±m	45,4±4,30	63,0±4,25	82,4±2,87	43,2±3,75
рение ик- . ры, %	Cv, %	29,90	20,27	11,03	27,58

На основании литературных данных и собственных исследований обсуждается эффективность инкубации клейкой икры в рыбоводных аппаратах. Приводятся результаты экспериментов по обесклеиванию икры карпа различными веществами (табл. 6).

Таблица 6

Способ обескленвания	Продолжи- тельность обескленвания, мин.	Оплодотворение икры, %	Средний выход деловых личинок, %
ПАСГ Речной ил Молоко Тальк Прудовая вода	45	74,1	57,5
	50	88,4	55,3
	40	81,0	75,3
	40	75,0	54,1
	60	83,0	25,5

г) Зависимость инкубации икры от температуры, системы аппаратов

Продолжительность инкубации икры карпа и сазана в разные годы определяется прежде всего температурой воды и

составляет 95.7—163,8 градусо-дня.

Проведенная нами сравнительная оценка инкубационных аппаратов разных систем выявила их различную эффективность; различия в их эксплуатационных качествах обусловили, по-видимому, частоту нарушений развития эмбрионов. В результате выживаемость икры сазана и карпа при одинаковом способе обесклеивания, при инкубации в аппаратах Вейса составила соответственно 45—70% и 60—83%; в аппаратах ВНИИПРХ (испытанных нами для инкубации икры карпа и сазана) — 46,3 и 35,6—49,7%. При инкубации необесклеенной икры в лотковом аппарате Садова — Коханской выход был наибольший — 77—93%. Однако работа с лотковым апнаратом сложна и требует особых условий.

Таким образом, для обеспечения стабильной выживаемости икры в искусственных условиях ее инкубации наиболее целесообразно обескленвание ее молоком и инкубирование в

аппаратах Вейса.

2. Сравнительные результаты заводского и естественного воспроизводства сазана и карпа

Перенесение сроков получения зрелых половых продуктов при заводском способе с мая на апрель в Волгоградской об-

Таблица 7
Результаты нерестовой кампании при разных способах
воспроизводства карпа и сазана

Рыбхоз	Вид рыбы	Способ получения молоди	Годы	Дата получения молоди	Колячество производи- телей, шт.	Количество личинок на 1 самку, тыс. шт.
 ПРЗ	сазан	заводской	1966: 1970	23.IV—25.V	2258	108,5—234,4
цгэ ,	Сазан	способ	1900—1910	25.1 V — 25. V	2200	100,0 201,1
· · ·		естествен-	1964—1966	10.V—27.VI	1262	47,4—86,5
_	1.01	ный нерест	·			
«Ерге-	карп	заводской	19701971	18.V—2.VI	89	100,5—186,0
нинский»		способ	1968—1971	18.V—10.VI	1685	24.0—69.7
		естествен. ный нерест	1900—1971	10.4 — 10.41	1000	24,0—05,1
«Ворон-	карп	заводской	1973—1977	10.V-20.V	180	180,0—229,0.
ка»		способ		1		
		естествен-	1973—1977	28.V—22.VI	804	48,0—67,0
		ный нерест	l ·	i		l : :
-2 1		•	•	•	•	•

ласти и с июня на май в Рязанской и Московской областях позволяет удлинить вегетационный период на 15—30 дней, что обеспечивает получение более зимостойких сеголетков и значительное повышение рыбопродуктивности выростных прудов (например, в ЦРЗ до 560 кг/га вместо 300 кг/га). При этом значительно увеличивается выход молоди (табл. 7).

3. Подращивание молоди в мальковых прудах

В последнее время все большее распространение получает подращивание молоди в мальковых прудах перед посадкой ее в выростные. При заводском же получении молоди важность этого звена особенно возрастает. «Заводская» молодь, благодаря раннему зарыблению, полнее использует естественные ресурсы прудов и быстрее растет. Например, на ЦРЗ к концу мая «заводская» молодь превышала по массе молодь от естественного нереста более чем в 10 раз. Это благотворно сказывается и на дальнейшем выращивании ее в выростных прудах, продуктивность которых возрастает почти вдвое.

Таблица
Влияние плотности посадки личинок на рыбоводные
показатели мальковых прудов (срок подращивания 20 дней)

Показатели			Плотност	ь посадки,	тыс. шт/га	1
показатели	<u> </u>	400	500	600	700	1000
Выход моло-	M±m	76,9±3,73	79,4±4,14	81,9±3,10	71.8 ± 13.0 36.2	44,1±11,9
ди, %	Cy, %	17,9	18,6	13,9		81,1
Продуктив-	M±m	94 ±13,4	92±15,5	120±19,1	74±10,6	71±16,3
ность, кг/га	Cv, %	53,2	60,9	59,3	28,8	69,0
Средняя мас-	M±m	293 ± 46,2	220±35,3	245±46, 2	150±30,0	223±33,7
са, мг	Cv, %	58,3	57,7	69,8	40,0	45,3

Таблиц:
Влияние сроков подращивания молоди на рыбоводные показатели
мальковых прудов (плотность посадки 600 тыс. шт/га)

- 		Количество дней подращивания					
Показатели		10	- 15	20	25	30	
Выход моло-	M±m	69±5,1	78±3,9	75±2.7	70±5,1	43±9,0	
ди, %	Cv, %	26,1	18,2	24.0	30,0	68,8	
Продуктив-	M±m	40±10,8	68±11,4	144±20,9	130±16,1	80±14,0	
ность, кг/га	Cv, %	35,0	60,3	95,8	51,0	52,5	
Средняя мас-	M±m	122±13,0	183±18,9	427±65,3	449 ± 82,4	251 ± 28,3	
са, мг	Cv, %	37,7	37,2	100,0	75,3	33,8	

Результаты выращивания сеголетков сазана и карпа при различных способах воспроизводства

		Зарыбление п	рудов			Облов пр	удов
Группа молоди	Хозяйство	Вид рыбы	Дата	Плот- ность посадки, тыс. шт/га	Средняя масса, г	Выход, %	Рыбопро- дуктивность, кг/га
Молодь от нереста в прудах« Заводская молодь	Ергенинский» *	карп карп	10.VI 23.V	82,1 85,8	33,4 50,0	21,8 17,0	597,0 815,0
Молодь от нереста в прудах Заводская молодь	«Воронка» » »	карп карп карп карп	16.VI 25.V 21.VI 18.V	50,0 50,0 37,5 37,5	12,0 24,0 10,3 35,0	70,0 65,0 86,0 72,0	420,0 790,0 335,0 945,0
Молодь из нерестовиков после подращивания	црз	сазан	12.VI 25.V	20,0	23,7	77,2 92,6	373,0 630,0
Заводская молодь без подращи- вания	»	сазан	12.V	40,0	23,6	62,4	582,0
				1	ľ		

Однако до сих пор нет единого мнения относительно плотности посадки и сроков подращивания личинок. При плотности 1 млн. шт/га получены низкие рыбоводные результаты (средняя масса 71 мг. выход — 44,1%). Поставленные затем специальные опыты показали влияние плотности и сроков подращивания личинок на рыбоводные показатели мальковых прудов (табл. 8—9).

Из таблиц 9 и 10 видно, что при подращивании личинок оптимальными плотностями являются 500—600 тыс, шт/га и

продолжительность подращивания 20 дней.

4. Выращивание сеголетков

Анализ роста сеголетков в выростных прудах (увеличение массы, среднесуточный прирост, относительная скорость роста) показал, что «заводская» молодь в течение всего периода опережала по массе молодь, полученную при естественном нересте в прудах, в результате к осени она оказывавалась в 2—3 раза большей по массе, обусловливая значительное повышение рыбопродуктивности (табл. 10). При предварительном подращивании «заводская» молодь опережает в росте любую другую группу; подрощенная молодь от естественного нереста в прудах хотя и догоняет по массе заводскую неподрощенную, но значительно уступает «заводской» по продуктивности.

При паразитологических обследованиях в мальковых прудах, где подращивались личинки, полученные заводским способом, паразитов не обнаруживали даже в случаях вспышек заболеваний среди молоди от естественного нереста (табл. 11)

Таблица Зараженность молоди ихтиофтирнусом в мальковых прудах при разных способах разведения

			Заражс мол		Выход и ковых і	
Способ получения	молоди	Посаже- но личи- нок; тыс. шт.	%	интенсив- ность зараже- иня, шт. особей	тыс. шт.	%
Нерест в прудах Заводской способ		5026,0 4765,0	71-100	1—48	899,0 4318,0	17,8 90,0

Морфометрические показатели свидетельствуют о том, что сеголетки, полученные в результате нереста в прудах и заводского способа, достоверно различаются лишь по неко-

торым пластическим признакам, что, по-видимому, вызвано различием в условиях питания.

5. Экономическая эффективность двух способов воспроизводства

При заводском способе воспроизводства карпа и сазана все рыбоводные показатели выше, чем при обычном прудовом. На примере ЦРЗ видно, что в результате эффективного нереста даже в хорошо подготовленных прудах выход 4—7- дневных личинок примерно в 3 раза, а выход сеголетков от одной самки в 1,5—5 раз меньше, чем при заводском способе (табл. 12).

Таблица 12-Рыбоводные показатели при различных способах воспроизводства (ЦРЗ, средние за 3 года)

Биотехнические показатели	Нерест '		
	групповой в выростных прудах	в нересто- вых прудах	Заводской способ
Использовано производителей, шт. Выход личнюк от 1 самки, тыс. шт. Выход сеголетков от 1 самки,	3500	540 30,0	200 230,0
тыс. шт.	3,2-11,6	19,0—40,3	67,4—1040,0
Рыбопродуктивность выростных прудов, кг/га	150—300	150—500	500—700

Заводской способ обеспечил снижение себестоимости продукции на 52,8% и рост производительности труда на 400,4%. Годовой экономический эффект составил 98000 рублей. Затраты на строительство инкубационного цеха мощностью 200 млн. личинок (69941 руб.) полностью окупились за 2 года.

В период проведения опытной работы заводской способ получения личинок при непосредственном участии автора внедрен в следующих хозяйствах: Цимлянский рыбоводный завод, рыбхоз «Ергенинский», рыбхоз «Воронка», рыбхоз «Шостка», рыбоводная станция «Павловская», рыбосовхоз «Ленинский», рыбхоз «Рассвет» и др.

Выводы

1. Совершенствование заводского способа воспроизводства карпа и сазана в условиях производственной деятельности рыбоводных хозяйств должно осуществляться в двух направлениях:

а) дальнейшей разработки технологического цикла с учетом биологичесних особенностей объекта;
б) проведения мероприятий, направленных на улучшение

стад, имеющихся в хозяйствах.

2. Применяемые в настоящее время приемы технологического цикла неравноценны. Повышению эффективности заводского воспроизводства карпа и сазана способствуют следуюшие:

2.1. Обязательное выдерживание производителей перед инъекцией при температурах, близких к нерестовым (при $t^{\circ} = 16 - 18^{\circ}$ С в течение 10 суток, при подогреве воды до

17-22° С — около 5 суток).

2.2. Определение кратности инъекций и дозировки гипофиза в зависимости от температуры. При t°=15-18° C более. целесообразны дробные инъекции, при t°=17-22° С достаточны разовые (особенно применительно к самкам, предварительно выдерживаемым при температурах, близких к нерестовым), при t°=24-28° дробные инъекции неэффективны.

2.3. Наиболее эффективным средством обесклеивания икры (среди применяемых в настоящее время) является смесь

молока и воды в соотношении 1:8,

2.4. В современных производственных условиях целесообразно использование для инкубации обесклеенной икры карпа аппаратов Вейса. Лоточные аппараты Садова—Коханской для инкубации икры в приклеенном состоянии требуют относительно сложного оборудования цеха и не обеспечивают проведения цикубации в больших масштабах.

 2.5. В средней полосе важным технологическим приемом; является подогрев воды, обеспечивающий, особенно в прохладные годы, получение молоди примерно на 30 дней раньше 7

12

обычных сроков. 🕆

2.6. Обязательным звеном технологического цикла должно быть подращивание молоди. Оптимальная плотность посадки в мальновые пруды — 500—600 тыс. шт/га при сроке под-

ращивания 20—25 дней.

2.7. Заводской способ обеспечивает высокую экономическую эффективность. На примере ЦРЗ показано, что снижение себестоимости продукции составляет 58,2%, рост производительности труда — 400%, годовой экономический эффект — 98,6 тыс. рублей. Затраты на строительство цеха мощностью 200 млн. личинок окупаются за два сезона.

3. При комплектовании маточных стад в условиях заводского способа воспроизводства карпа особое значение приобретают морфобиологические особенности производителей. 🔝

3.1. В результате отбора лучших особей для искусственного осеменения икры изменчивость производителей по размерам тела и упитанности низка (в хозяйстве «Воронка» коэффициент вариации по длине тела 7-8%, по массе 20%, по

упитанности — 9,3—17,7%). 3.2. Варнабельность размеров икры и личинок, полученных как от одной самки, так и от разных самок, невелика (Cv = 5,5-4,2 и 13,9-4,5% соответственно).

3.3. Изменчивость самок по массе отдаваемой икры в разных возрастных группах невелика, но неодинакова: с возра-

стом рыб Су уменьшается от 9,28 до 4,8%. зависят от возраста производителей. Самые низкие показатели наблюдаются у впервые созревающих (210,0 тыс. шт.; 61,3% соответственно), у средневозрастных (462,0 тыс. шт.; 81,7%), у старшевозрастных рабочая плодовитость высока, но процент развивающейся икры низок (439.0 тыс. шт.; 49.6%).

3.5. Изменчивость самок по рабочей плодовитости очень высока: (Cv=51,2-64,1%). Это позволяет предполагать, что отбор по этому показателю, особенно среди средневозраст-

ных рыб, может привести к улучшению стада.

3.6. С возрастом производителей связана их изменчивость по оплодотворению икры. У впервые нерестующих и старых рыб соответствующий показатель особенно неустойчив (Cv= 29,9-27,5%), у средневозрастных он не испытывает значительных колебаний (Cv = 11.0%).

👯 3.7.: Изменчивость производителей по жизнестойкости эмбрионов меняется в зависимости от возраста: наиболее разнокачественной по выживаемости является икра старых рыб (Cv=21,2%), наиболее однородной — икра средневозрастных

рыб (Cv = 11,7%).

3.8. Оплодотворяемость и жизнестойкость икринок зависят от генетической характеристики производителей. Наибольший выход молоди наблюдается у гетерозиготных производителей (78%), в группах, где часть производителей гомозиготны, выход молоди снижается (до 68%).

3.9. Использование при заводском способе впервые созревших производителей недопустимо из-за частой гибели их после гипофизарных инъекций и низкого качества икры.

Предложения

- 1. Заводским способом личинок карпа и сазана целесообразно получать в условиях Волгоградской области в период с начала третьей декады апреля до конца первой декады мая: в нечерноземной зоне, в частности Рязанской, Московской и Калининской областях (при использовании подогрева воды: как обязательного элемента технологии) - начиная со второй декады мая.....
 - 2. Для обеспечения высокой эффективности заводского;

CANBORD NOT COLUMN способа воспроизводства в промышленном карповодстве необходимо соблюдение комплекса технологических приемов и целенаправленного комплектования маточных стад.

3. Повышению эффективности отдельных звеньев заводской технологии должно способствовать соблюдение следую-

щих правил:

а) выдерживание производителей перед гипофизарной инъекцией при температурах, близких к нерестовым, в течение 5—

б) содержание производителей после инъекции при темпе-

ратурах, близких к нерестовым, в земляных садках; 🐎

в) выбор кратности и дозировки инъекции в соответствии с температурой (при температуре 16—18° С — дробные, при температуре 18—20° С — разовые инъекции);

г) обесклеивание икры смесью молока и воды в соотноше-

нип 1:8:

🗟 д) инкубирование икры в аппаратах Вейса (не применять

аппарата ВНИИПРХ);

- е) зарыбление выростных прудов молодью; предварительно подрощенной в мальковых прудах (наиболее целесообразная плотность посадки 500-600 тыс. шт/га в течение 20-25 дней).
- 4. При комплектации маточных стад необходимо учитывать, что при заводском способе возрастает значение морфобиологических характеристик производителей, а следовательно, и роль подбора. Для искусственного осеменения икры ис- пользовать средневозрастных производителей (использование впервые созревающих недопустимо, а старшевозрастных нежелательно). Отдавать предпочтение самкам, характеризующимся высокой рабочей плодовитостью. Такой отбор может привести к улучшению стада. ..

Список работ, опубликованных по теме диссертации:

1. Сим До Тхек. Преимущество заводского метода воспроизводства сазана. Рыбное хозяйство, № 9, 1970, с. 17—18.

2. Сим До Тхек. Внедрение заводского метода по воспроизводству сазана на Цимлянском заводе частиковых рыб Волгоградской области. Рыбоводство и рыболовство, № 6, 1973, c. 5—6.

3. Мухамедова А. Ф., Сим До Тхек. Анализ работы Цимлянского рыбоводного завода и мероприятия, по повышению: его эффективности. Труды Волгоградского отделения Гос-НИОРХ, т. 9, 1975, с. 169—182.

4. Сим До Тхек. Потомство карпа получено заводским способом. Рыбоводство и рыболовство, № 3, 1975, с. 9-10.

5. Сим До Тхек. Сравнивая результаты. Рыбоводство н рыболовство. № 10, 1980, с. 4—5.

706.5 618+ Desk. Sux. Comp. 673